123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101 |
- *DECK CACAI
- SUBROUTINE CACAI (Z, FNU, KODE, MR, N, Y, NZ, RL, TOL, ELIM, ALIM)
- C***BEGIN PROLOGUE CACAI
- C***SUBSIDIARY
- C***PURPOSE Subsidiary to CAIRY
- C***LIBRARY SLATEC
- C***TYPE ALL (CACAI-A, ZACAI-A)
- C***AUTHOR Amos, D. E., (SNL)
- C***DESCRIPTION
- C
- C CACAI APPLIES THE ANALYTIC CONTINUATION FORMULA
- C
- C K(FNU,ZN*EXP(MP))=K(FNU,ZN)*EXP(-MP*FNU) - MP*I(FNU,ZN)
- C MP=PI*MR*CMPLX(0.0,1.0)
- C
- C TO CONTINUE THE K FUNCTION FROM THE RIGHT HALF TO THE LEFT
- C HALF Z PLANE FOR USE WITH CAIRY WHERE FNU=1/3 OR 2/3 AND N=1.
- C CACAI IS THE SAME AS CACON WITH THE PARTS FOR LARGER ORDERS AND
- C RECURRENCE REMOVED. A RECURSIVE CALL TO CACON CAN RESULT IF CACON
- C IS CALLED FROM CAIRY.
- C
- C***SEE ALSO CAIRY
- C***ROUTINES CALLED CASYI, CBKNU, CMLRI, CS1S2, CSERI, R1MACH
- C***REVISION HISTORY (YYMMDD)
- C 830501 DATE WRITTEN
- C 910415 Prologue converted to Version 4.0 format. (BAB)
- C***END PROLOGUE CACAI
- COMPLEX CSGN, CSPN, C1, C2, Y, Z, ZN, CY
- REAL ALIM, ARG, ASCLE, AZ, CPN, DFNU, ELIM, FMR, FNU, PI, RL,
- * SGN, SPN, TOL, YY, R1MACH
- INTEGER INU, IUF, KODE, MR, N, NN, NW, NZ
- DIMENSION Y(N), CY(2)
- DATA PI / 3.14159265358979324E0 /
- C***FIRST EXECUTABLE STATEMENT CACAI
- NZ = 0
- ZN = -Z
- AZ = ABS(Z)
- NN = N
- DFNU = FNU + (N-1)
- IF (AZ.LE.2.0E0) GO TO 10
- IF (AZ*AZ*0.25E0.GT.DFNU+1.0E0) GO TO 20
- 10 CONTINUE
- C-----------------------------------------------------------------------
- C POWER SERIES FOR THE I FUNCTION
- C-----------------------------------------------------------------------
- CALL CSERI(ZN, FNU, KODE, NN, Y, NW, TOL, ELIM, ALIM)
- GO TO 40
- 20 CONTINUE
- IF (AZ.LT.RL) GO TO 30
- C-----------------------------------------------------------------------
- C ASYMPTOTIC EXPANSION FOR LARGE Z FOR THE I FUNCTION
- C-----------------------------------------------------------------------
- CALL CASYI(ZN, FNU, KODE, NN, Y, NW, RL, TOL, ELIM, ALIM)
- IF (NW.LT.0) GO TO 70
- GO TO 40
- 30 CONTINUE
- C-----------------------------------------------------------------------
- C MILLER ALGORITHM NORMALIZED BY THE SERIES FOR THE I FUNCTION
- C-----------------------------------------------------------------------
- CALL CMLRI(ZN, FNU, KODE, NN, Y, NW, TOL)
- IF(NW.LT.0) GO TO 70
- 40 CONTINUE
- C-----------------------------------------------------------------------
- C ANALYTIC CONTINUATION TO THE LEFT HALF PLANE FOR THE K FUNCTION
- C-----------------------------------------------------------------------
- CALL CBKNU(ZN, FNU, KODE, 1, CY, NW, TOL, ELIM, ALIM)
- IF (NW.NE.0) GO TO 70
- FMR = MR
- SGN = -SIGN(PI,FMR)
- CSGN = CMPLX(0.0E0,SGN)
- IF (KODE.EQ.1) GO TO 50
- YY = -AIMAG(ZN)
- CPN = COS(YY)
- SPN = SIN(YY)
- CSGN = CSGN*CMPLX(CPN,SPN)
- 50 CONTINUE
- C-----------------------------------------------------------------------
- C CALCULATE CSPN=EXP(FNU*PI*I) TO MINIMIZE LOSSES OF SIGNIFICANCE
- C WHEN FNU IS LARGE
- C-----------------------------------------------------------------------
- INU = FNU
- ARG = (FNU-INU)*SGN
- CPN = COS(ARG)
- SPN = SIN(ARG)
- CSPN = CMPLX(CPN,SPN)
- IF (MOD(INU,2).EQ.1) CSPN = -CSPN
- C1 = CY(1)
- C2 = Y(1)
- IF (KODE.EQ.1) GO TO 60
- IUF = 0
- ASCLE = 1.0E+3*R1MACH(1)/TOL
- CALL CS1S2(ZN, C1, C2, NW, ASCLE, ALIM, IUF)
- NZ = NZ + NW
- 60 CONTINUE
- Y(1) = CSPN*C1 + CSGN*C2
- RETURN
- 70 CONTINUE
- NZ = -1
- IF(NW.EQ.(-2)) NZ=-2
- RETURN
- END
|