123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342 |
- *DECK CAIRY
- SUBROUTINE CAIRY (Z, ID, KODE, AI, NZ, IERR)
- C***BEGIN PROLOGUE CAIRY
- C***PURPOSE Compute the Airy function Ai(z) or its derivative dAi/dz
- C for complex argument z. A scaling option is available
- C to help avoid underflow and overflow.
- C***LIBRARY SLATEC
- C***CATEGORY C10D
- C***TYPE COMPLEX (CAIRY-C, ZAIRY-C)
- C***KEYWORDS AIRY FUNCTION, BESSEL FUNCTION OF ORDER ONE THIRD,
- C BESSEL FUNCTION OF ORDER TWO THIRDS
- C***AUTHOR Amos, D. E., (SNL)
- C***DESCRIPTION
- C
- C On KODE=1, CAIRY computes the complex Airy function Ai(z)
- C or its derivative dAi/dz on ID=0 or ID=1 respectively. On
- C KODE=2, a scaling option exp(zeta)*Ai(z) or exp(zeta)*dAi/dz
- C is provided to remove the exponential decay in -pi/3<arg(z)
- C <pi/3 and the exponential growth in pi/3<abs(arg(z))<pi where
- C zeta=(2/3)*z**(3/2).
- C
- C While the Airy functions Ai(z) and dAi/dz are analytic in
- C the whole z-plane, the corresponding scaled functions defined
- C for KODE=2 have a cut along the negative real axis.
- C
- C Input
- C Z - Argument of type COMPLEX
- C ID - Order of derivative, ID=0 or ID=1
- C KODE - A parameter to indicate the scaling option
- C KODE=1 returns
- C AI=Ai(z) on ID=0
- C AI=dAi/dz on ID=1
- C at z=Z
- C =2 returns
- C AI=exp(zeta)*Ai(z) on ID=0
- C AI=exp(zeta)*dAi/dz on ID=1
- C at z=Z where zeta=(2/3)*z**(3/2)
- C
- C Output
- C AI - Result of type COMPLEX
- C NZ - Underflow indicator
- C NZ=0 Normal return
- C NZ=1 AI=0 due to underflow in
- C -pi/3<arg(Z)<pi/3 on KODE=1
- C IERR - Error flag
- C IERR=0 Normal return - COMPUTATION COMPLETED
- C IERR=1 Input error - NO COMPUTATION
- C IERR=2 Overflow - NO COMPUTATION
- C (Re(Z) too large with KODE=1)
- C IERR=3 Precision warning - COMPUTATION COMPLETED
- C (Result has less than half precision)
- C IERR=4 Precision error - NO COMPUTATION
- C (Result has no precision)
- C IERR=5 Algorithmic error - NO COMPUTATION
- C (Termination condition not met)
- C
- C *Long Description:
- C
- C Ai(z) and dAi/dz are computed from K Bessel functions by
- C
- C Ai(z) = c*sqrt(z)*K(1/3,zeta)
- C dAi/dz = -c* z *K(2/3,zeta)
- C c = 1/(pi*sqrt(3))
- C zeta = (2/3)*z**(3/2)
- C
- C when abs(z)>1 and from power series when abs(z)<=1.
- C
- C In most complex variable computation, one must evaluate ele-
- C mentary functions. When the magnitude of Z is large, losses
- C of significance by argument reduction occur. Consequently, if
- C the magnitude of ZETA=(2/3)*Z**(3/2) exceeds U1=SQRT(0.5/UR),
- C then losses exceeding half precision are likely and an error
- C flag IERR=3 is triggered where UR=R1MACH(4)=UNIT ROUNDOFF.
- C Also, if the magnitude of ZETA is larger than U2=0.5/UR, then
- C all significance is lost and IERR=4. In order to use the INT
- C function, ZETA must be further restricted not to exceed
- C U3=I1MACH(9)=LARGEST INTEGER. Thus, the magnitude of ZETA
- C must be restricted by MIN(U2,U3). In IEEE arithmetic, U1,U2,
- C and U3 are approximately 2.0E+3, 4.2E+6, 2.1E+9 in single
- C precision and 4.7E+7, 2.3E+15, 2.1E+9 in double precision.
- C This makes U2 limiting is single precision and U3 limiting
- C in double precision. This means that the magnitude of Z
- C cannot exceed approximately 3.4E+4 in single precision and
- C 2.1E+6 in double precision. This also means that one can
- C expect to retain, in the worst cases on 32-bit machines,
- C no digits in single precision and only 6 digits in double
- C precision.
- C
- C The approximate relative error in the magnitude of a complex
- C Bessel function can be expressed as P*10**S where P=MAX(UNIT
- C ROUNDOFF,1.0E-18) is the nominal precision and 10**S repre-
- C sents the increase in error due to argument reduction in the
- C elementary functions. Here, S=MAX(1,ABS(LOG10(ABS(Z))),
- C ABS(LOG10(FNU))) approximately (i.e., S=MAX(1,ABS(EXPONENT OF
- C ABS(Z),ABS(EXPONENT OF FNU)) ). However, the phase angle may
- C have only absolute accuracy. This is most likely to occur
- C when one component (in magnitude) is larger than the other by
- C several orders of magnitude. If one component is 10**K larger
- C than the other, then one can expect only MAX(ABS(LOG10(P))-K,
- C 0) significant digits; or, stated another way, when K exceeds
- C the exponent of P, no significant digits remain in the smaller
- C component. However, the phase angle retains absolute accuracy
- C because, in complex arithmetic with precision P, the smaller
- C component will not (as a rule) decrease below P times the
- C magnitude of the larger component. In these extreme cases,
- C the principal phase angle is on the order of +P, -P, PI/2-P,
- C or -PI/2+P.
- C
- C***REFERENCES 1. M. Abramowitz and I. A. Stegun, Handbook of Mathe-
- C matical Functions, National Bureau of Standards
- C Applied Mathematics Series 55, U. S. Department
- C of Commerce, Tenth Printing (1972) or later.
- C 2. D. E. Amos, Computation of Bessel Functions of
- C Complex Argument and Large Order, Report SAND83-0643,
- C Sandia National Laboratories, Albuquerque, NM, May
- C 1983.
- C 3. D. E. Amos, A Subroutine Package for Bessel Functions
- C of a Complex Argument and Nonnegative Order, Report
- C SAND85-1018, Sandia National Laboratory, Albuquerque,
- C NM, May 1985.
- C 4. D. E. Amos, A portable package for Bessel functions
- C of a complex argument and nonnegative order, ACM
- C Transactions on Mathematical Software, 12 (September
- C 1986), pp. 265-273.
- C
- C***ROUTINES CALLED CACAI, CBKNU, I1MACH, R1MACH
- C***REVISION HISTORY (YYMMDD)
- C 830501 DATE WRITTEN
- C 890801 REVISION DATE from Version 3.2
- C 910415 Prologue converted to Version 4.0 format. (BAB)
- C 920128 Category corrected. (WRB)
- C 920811 Prologue revised. (DWL)
- C***END PROLOGUE CAIRY
- COMPLEX AI, CONE, CSQ, CY, S1, S2, TRM1, TRM2, Z, ZTA, Z3
- REAL AA, AD, AK, ALIM, ATRM, AZ, AZ3, BK, CK, COEF, C1, C2, DIG,
- * DK, D1, D2, ELIM, FID, FNU, RL, R1M5, SFAC, TOL, TTH, ZI, ZR,
- * Z3I, Z3R, R1MACH, BB, ALAZ
- INTEGER ID, IERR, IFLAG, K, KODE, K1, K2, MR, NN, NZ, I1MACH
- DIMENSION CY(1)
- DATA TTH, C1, C2, COEF /6.66666666666666667E-01,
- * 3.55028053887817240E-01,2.58819403792806799E-01,
- * 1.83776298473930683E-01/
- DATA CONE / (1.0E0,0.0E0) /
- C***FIRST EXECUTABLE STATEMENT CAIRY
- IERR = 0
- NZ=0
- IF (ID.LT.0 .OR. ID.GT.1) IERR=1
- IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
- IF (IERR.NE.0) RETURN
- AZ = ABS(Z)
- TOL = MAX(R1MACH(4),1.0E-18)
- FID = ID
- IF (AZ.GT.1.0E0) GO TO 60
- C-----------------------------------------------------------------------
- C POWER SERIES FOR ABS(Z).LE.1.
- C-----------------------------------------------------------------------
- S1 = CONE
- S2 = CONE
- IF (AZ.LT.TOL) GO TO 160
- AA = AZ*AZ
- IF (AA.LT.TOL/AZ) GO TO 40
- TRM1 = CONE
- TRM2 = CONE
- ATRM = 1.0E0
- Z3 = Z*Z*Z
- AZ3 = AZ*AA
- AK = 2.0E0 + FID
- BK = 3.0E0 - FID - FID
- CK = 4.0E0 - FID
- DK = 3.0E0 + FID + FID
- D1 = AK*DK
- D2 = BK*CK
- AD = MIN(D1,D2)
- AK = 24.0E0 + 9.0E0*FID
- BK = 30.0E0 - 9.0E0*FID
- Z3R = REAL(Z3)
- Z3I = AIMAG(Z3)
- DO 30 K=1,25
- TRM1 = TRM1*CMPLX(Z3R/D1,Z3I/D1)
- S1 = S1 + TRM1
- TRM2 = TRM2*CMPLX(Z3R/D2,Z3I/D2)
- S2 = S2 + TRM2
- ATRM = ATRM*AZ3/AD
- D1 = D1 + AK
- D2 = D2 + BK
- AD = MIN(D1,D2)
- IF (ATRM.LT.TOL*AD) GO TO 40
- AK = AK + 18.0E0
- BK = BK + 18.0E0
- 30 CONTINUE
- 40 CONTINUE
- IF (ID.EQ.1) GO TO 50
- AI = S1*CMPLX(C1,0.0E0) - Z*S2*CMPLX(C2,0.0E0)
- IF (KODE.EQ.1) RETURN
- ZTA = Z*CSQRT(Z)*CMPLX(TTH,0.0E0)
- AI = AI*CEXP(ZTA)
- RETURN
- 50 CONTINUE
- AI = -S2*CMPLX(C2,0.0E0)
- IF (AZ.GT.TOL) AI = AI + Z*Z*S1*CMPLX(C1/(1.0E0+FID),0.0E0)
- IF (KODE.EQ.1) RETURN
- ZTA = Z*CSQRT(Z)*CMPLX(TTH,0.0E0)
- AI = AI*CEXP(ZTA)
- RETURN
- C-----------------------------------------------------------------------
- C CASE FOR ABS(Z).GT.1.0
- C-----------------------------------------------------------------------
- 60 CONTINUE
- FNU = (1.0E0+FID)/3.0E0
- C-----------------------------------------------------------------------
- C SET PARAMETERS RELATED TO MACHINE CONSTANTS.
- C TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0E-18.
- C ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT.
- C EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL AND
- C EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL ARE INTERVALS NEAR
- C UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
- C RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z.
- C DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
- C-----------------------------------------------------------------------
- K1 = I1MACH(12)
- K2 = I1MACH(13)
- R1M5 = R1MACH(5)
- K = MIN(ABS(K1),ABS(K2))
- ELIM = 2.303E0*(K*R1M5-3.0E0)
- K1 = I1MACH(11) - 1
- AA = R1M5*K1
- DIG = MIN(AA,18.0E0)
- AA = AA*2.303E0
- ALIM = ELIM + MAX(-AA,-41.45E0)
- RL = 1.2E0*DIG + 3.0E0
- ALAZ=ALOG(AZ)
- C-----------------------------------------------------------------------
- C TEST FOR RANGE
- C-----------------------------------------------------------------------
- AA=0.5E0/TOL
- BB=I1MACH(9)*0.5E0
- AA=MIN(AA,BB)
- AA=AA**TTH
- IF (AZ.GT.AA) GO TO 260
- AA=SQRT(AA)
- IF (AZ.GT.AA) IERR=3
- CSQ=CSQRT(Z)
- ZTA=Z*CSQ*CMPLX(TTH,0.0E0)
- C-----------------------------------------------------------------------
- C RE(ZTA).LE.0 WHEN RE(Z).LT.0, ESPECIALLY WHEN IM(Z) IS SMALL
- C-----------------------------------------------------------------------
- IFLAG = 0
- SFAC = 1.0E0
- ZI = AIMAG(Z)
- ZR = REAL(Z)
- AK = AIMAG(ZTA)
- IF (ZR.GE.0.0E0) GO TO 70
- BK = REAL(ZTA)
- CK = -ABS(BK)
- ZTA = CMPLX(CK,AK)
- 70 CONTINUE
- IF (ZI.NE.0.0E0) GO TO 80
- IF (ZR.GT.0.0E0) GO TO 80
- ZTA = CMPLX(0.0E0,AK)
- 80 CONTINUE
- AA = REAL(ZTA)
- IF (AA.GE.0.0E0 .AND. ZR.GT.0.0E0) GO TO 100
- IF (KODE.EQ.2) GO TO 90
- C-----------------------------------------------------------------------
- C OVERFLOW TEST
- C-----------------------------------------------------------------------
- IF (AA.GT.(-ALIM)) GO TO 90
- AA = -AA + 0.25E0*ALAZ
- IFLAG = 1
- SFAC = TOL
- IF (AA.GT.ELIM) GO TO 240
- 90 CONTINUE
- C-----------------------------------------------------------------------
- C CBKNU AND CACAI RETURN EXP(ZTA)*K(FNU,ZTA) ON KODE=2
- C-----------------------------------------------------------------------
- MR = 1
- IF (ZI.LT.0.0E0) MR = -1
- CALL CACAI(ZTA, FNU, KODE, MR, 1, CY, NN, RL, TOL, ELIM, ALIM)
- IF (NN.LT.0) GO TO 250
- NZ = NZ + NN
- GO TO 120
- 100 CONTINUE
- IF (KODE.EQ.2) GO TO 110
- C-----------------------------------------------------------------------
- C UNDERFLOW TEST
- C-----------------------------------------------------------------------
- IF (AA.LT.ALIM) GO TO 110
- AA = -AA - 0.25E0*ALAZ
- IFLAG = 2
- SFAC = 1.0E0/TOL
- IF (AA.LT.(-ELIM)) GO TO 180
- 110 CONTINUE
- CALL CBKNU(ZTA, FNU, KODE, 1, CY, NZ, TOL, ELIM, ALIM)
- 120 CONTINUE
- S1 = CY(1)*CMPLX(COEF,0.0E0)
- IF (IFLAG.NE.0) GO TO 140
- IF (ID.EQ.1) GO TO 130
- AI = CSQ*S1
- RETURN
- 130 AI = -Z*S1
- RETURN
- 140 CONTINUE
- S1 = S1*CMPLX(SFAC,0.0E0)
- IF (ID.EQ.1) GO TO 150
- S1 = S1*CSQ
- AI = S1*CMPLX(1.0E0/SFAC,0.0E0)
- RETURN
- 150 CONTINUE
- S1 = -S1*Z
- AI = S1*CMPLX(1.0E0/SFAC,0.0E0)
- RETURN
- 160 CONTINUE
- AA = 1.0E+3*R1MACH(1)
- S1 = CMPLX(0.0E0,0.0E0)
- IF (ID.EQ.1) GO TO 170
- IF (AZ.GT.AA) S1 = CMPLX(C2,0.0E0)*Z
- AI = CMPLX(C1,0.0E0) - S1
- RETURN
- 170 CONTINUE
- AI = -CMPLX(C2,0.0E0)
- AA = SQRT(AA)
- IF (AZ.GT.AA) S1 = Z*Z*CMPLX(0.5E0,0.0E0)
- AI = AI + S1*CMPLX(C1,0.0E0)
- RETURN
- 180 CONTINUE
- NZ = 1
- AI = CMPLX(0.0E0,0.0E0)
- RETURN
- 240 CONTINUE
- NZ = 0
- IERR=2
- RETURN
- 250 CONTINUE
- IF(NN.EQ.(-1)) GO TO 240
- NZ=0
- IERR=5
- RETURN
- 260 CONTINUE
- IERR=4
- NZ=0
- RETURN
- END
|