123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281 |
- *DECK CBESK
- SUBROUTINE CBESK (Z, FNU, KODE, N, CY, NZ, IERR)
- C***BEGIN PROLOGUE CBESK
- C***PURPOSE Compute a sequence of the Bessel functions K(a,z) for
- C complex argument z and real nonnegative orders a=b,b+1,
- C b+2,... where b>0. A scaling option is available to
- C help avoid overflow.
- C***LIBRARY SLATEC
- C***CATEGORY C10B4
- C***TYPE COMPLEX (CBESK-C, ZBESK-C)
- C***KEYWORDS BESSEL FUNCTIONS OF COMPLEX ARGUMENT, K BESSEL FUNCTIONS,
- C MODIFIED BESSEL FUNCTIONS
- C***AUTHOR Amos, D. E., (SNL)
- C***DESCRIPTION
- C
- C On KODE=1, CBESK computes an N member sequence of complex
- C Bessel functions CY(L)=K(FNU+L-1,Z) for real nonnegative
- C orders FNU+L-1, L=1,...,N and complex Z.NE.0 in the cut
- C plane -pi<arg(Z)<=pi. On KODE=2, CBESJ returns the scaled
- C functions
- C
- C CY(L) = exp(Z)*K(FNU+L-1,Z), L=1,...,N
- C
- C which remove the exponential growth in both the left and
- C right half planes as Z goes to infinity. Definitions and
- C notation are found in the NBS Handbook of Mathematical
- C Functions (Ref. 1).
- C
- C Input
- C Z - Nonzero argument of type COMPLEX
- C FNU - Initial order of type REAL, FNU>=0
- C KODE - A parameter to indicate the scaling option
- C KODE=1 returns
- C CY(L)=K(FNU+L-1,Z), L=1,...,N
- C =2 returns
- C CY(L)=K(FNU+L-1,Z)*EXP(Z), L=1,...,N
- C N - Number of terms in the sequence, N>=1
- C
- C Output
- C CY - Result vector of type COMPLEX
- C NZ - Number of underflows set to zero
- C NZ=0 Normal return
- C NZ>0 CY(L)=0 for NZ values of L (if Re(Z)>0
- C then CY(L)=0 for L=1,...,NZ; in the
- C complementary half plane the underflows
- C may not be in an uninterrupted sequence)
- C IERR - Error flag
- C IERR=0 Normal return - COMPUTATION COMPLETED
- C IERR=1 Input error - NO COMPUTATION
- C IERR=2 Overflow - NO COMPUTATION
- C (abs(Z) too small and/or FNU+N-1
- C too large)
- C IERR=3 Precision warning - COMPUTATION COMPLETED
- C (Result has half precision or less
- C because abs(Z) or FNU+N-1 is large)
- C IERR=4 Precision error - NO COMPUTATION
- C (Result has no precision because
- C abs(Z) or FNU+N-1 is too large)
- C IERR=5 Algorithmic error - NO COMPUTATION
- C (Termination condition not met)
- C
- C *Long Description:
- C
- C Equations of the reference are implemented to compute K(a,z)
- C for small orders a and a+1 in the right half plane Re(z)>=0.
- C Forward recurrence generates higher orders. The formula
- C
- C K(a,z*exp((t)) = exp(-t)*K(a,z) - t*I(a,z), Re(z)>0
- C t = i*pi or -i*pi
- C
- C continues K to the left half plane.
- C
- C For large orders, K(a,z) is computed by means of its uniform
- C asymptotic expansion.
- C
- C For negative orders, the formula
- C
- C K(-a,z) = K(a,z)
- C
- C can be used.
- C
- C CBESK assumes that a significant digit sinh function is
- C available.
- C
- C In most complex variable computation, one must evaluate ele-
- C mentary functions. When the magnitude of Z or FNU+N-1 is
- C large, losses of significance by argument reduction occur.
- C Consequently, if either one exceeds U1=SQRT(0.5/UR), then
- C losses exceeding half precision are likely and an error flag
- C IERR=3 is triggered where UR=R1MACH(4)=UNIT ROUNDOFF. Also,
- C if either is larger than U2=0.5/UR, then all significance is
- C lost and IERR=4. In order to use the INT function, arguments
- C must be further restricted not to exceed the largest machine
- C integer, U3=I1MACH(9). Thus, the magnitude of Z and FNU+N-1
- C is restricted by MIN(U2,U3). In IEEE arithmetic, U1,U2, and
- C U3 approximate 2.0E+3, 4.2E+6, 2.1E+9 in single precision
- C and 4.7E+7, 2.3E+15 and 2.1E+9 in double precision. This
- C makes U2 limiting in single precision and U3 limiting in
- C double precision. This means that one can expect to retain,
- C in the worst cases on IEEE machines, no digits in single pre-
- C cision and only 6 digits in double precision. Similar con-
- C siderations hold for other machines.
- C
- C The approximate relative error in the magnitude of a complex
- C Bessel function can be expressed as P*10**S where P=MAX(UNIT
- C ROUNDOFF,1.0E-18) is the nominal precision and 10**S repre-
- C sents the increase in error due to argument reduction in the
- C elementary functions. Here, S=MAX(1,ABS(LOG10(ABS(Z))),
- C ABS(LOG10(FNU))) approximately (i.e., S=MAX(1,ABS(EXPONENT OF
- C ABS(Z),ABS(EXPONENT OF FNU)) ). However, the phase angle may
- C have only absolute accuracy. This is most likely to occur
- C when one component (in magnitude) is larger than the other by
- C several orders of magnitude. If one component is 10**K larger
- C than the other, then one can expect only MAX(ABS(LOG10(P))-K,
- C 0) significant digits; or, stated another way, when K exceeds
- C the exponent of P, no significant digits remain in the smaller
- C component. However, the phase angle retains absolute accuracy
- C because, in complex arithmetic with precision P, the smaller
- C component will not (as a rule) decrease below P times the
- C magnitude of the larger component. In these extreme cases,
- C the principal phase angle is on the order of +P, -P, PI/2-P,
- C or -PI/2+P.
- C
- C***REFERENCES 1. M. Abramowitz and I. A. Stegun, Handbook of Mathe-
- C matical Functions, National Bureau of Standards
- C Applied Mathematics Series 55, U. S. Department
- C of Commerce, Tenth Printing (1972) or later.
- C 2. D. E. Amos, Computation of Bessel Functions of
- C Complex Argument, Report SAND83-0086, Sandia National
- C Laboratories, Albuquerque, NM, May 1983.
- C 3. D. E. Amos, Computation of Bessel Functions of
- C Complex Argument and Large Order, Report SAND83-0643,
- C Sandia National Laboratories, Albuquerque, NM, May
- C 1983.
- C 4. D. E. Amos, A Subroutine Package for Bessel Functions
- C of a Complex Argument and Nonnegative Order, Report
- C SAND85-1018, Sandia National Laboratory, Albuquerque,
- C NM, May 1985.
- C 5. D. E. Amos, A portable package for Bessel functions
- C of a complex argument and nonnegative order, ACM
- C Transactions on Mathematical Software, 12 (September
- C 1986), pp. 265-273.
- C
- C***ROUTINES CALLED CACON, CBKNU, CBUNK, CUOIK, I1MACH, R1MACH
- C***REVISION HISTORY (YYMMDD)
- C 830501 DATE WRITTEN
- C 890801 REVISION DATE from Version 3.2
- C 910415 Prologue converted to Version 4.0 format. (BAB)
- C 920128 Category corrected. (WRB)
- C 920811 Prologue revised. (DWL)
- C***END PROLOGUE CBESK
- C
- COMPLEX CY, Z
- REAL AA, ALIM, ALN, ARG, AZ, DIG, ELIM, FN, FNU, FNUL, RL, R1M5,
- * TOL, UFL, XX, YY, R1MACH, BB
- INTEGER IERR, K, KODE, K1, K2, MR, N, NN, NUF, NW, NZ, I1MACH
- DIMENSION CY(N)
- C***FIRST EXECUTABLE STATEMENT CBESK
- IERR = 0
- NZ=0
- XX = REAL(Z)
- YY = AIMAG(Z)
- IF (YY.EQ.0.0E0 .AND. XX.EQ.0.0E0) IERR=1
- IF (FNU.LT.0.0E0) IERR=1
- IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
- IF (N.LT.1) IERR=1
- IF (IERR.NE.0) RETURN
- NN = N
- C-----------------------------------------------------------------------
- C SET PARAMETERS RELATED TO MACHINE CONSTANTS.
- C TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0E-18.
- C ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT.
- C EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL AND
- C EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL ARE INTERVALS NEAR
- C UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
- C RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z.
- C DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
- C FNUL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC SERIES FOR LARGE FNU
- C-----------------------------------------------------------------------
- TOL = MAX(R1MACH(4),1.0E-18)
- K1 = I1MACH(12)
- K2 = I1MACH(13)
- R1M5 = R1MACH(5)
- K = MIN(ABS(K1),ABS(K2))
- ELIM = 2.303E0*(K*R1M5-3.0E0)
- K1 = I1MACH(11) - 1
- AA = R1M5*K1
- DIG = MIN(AA,18.0E0)
- AA = AA*2.303E0
- ALIM = ELIM + MAX(-AA,-41.45E0)
- FNUL = 10.0E0 + 6.0E0*(DIG-3.0E0)
- RL = 1.2E0*DIG + 3.0E0
- AZ = ABS(Z)
- FN = FNU + (NN-1)
- C-----------------------------------------------------------------------
- C TEST FOR RANGE
- C-----------------------------------------------------------------------
- AA = 0.5E0/TOL
- BB=I1MACH(9)*0.5E0
- AA=MIN(AA,BB)
- IF(AZ.GT.AA) GO TO 210
- IF(FN.GT.AA) GO TO 210
- AA=SQRT(AA)
- IF(AZ.GT.AA) IERR=3
- IF(FN.GT.AA) IERR=3
- C-----------------------------------------------------------------------
- C OVERFLOW TEST ON THE LAST MEMBER OF THE SEQUENCE
- C-----------------------------------------------------------------------
- C UFL = EXP(-ELIM)
- UFL = R1MACH(1)*1.0E+3
- IF (AZ.LT.UFL) GO TO 180
- IF (FNU.GT.FNUL) GO TO 80
- IF (FN.LE.1.0E0) GO TO 60
- IF (FN.GT.2.0E0) GO TO 50
- IF (AZ.GT.TOL) GO TO 60
- ARG = 0.5E0*AZ
- ALN = -FN*ALOG(ARG)
- IF (ALN.GT.ELIM) GO TO 180
- GO TO 60
- 50 CONTINUE
- CALL CUOIK(Z, FNU, KODE, 2, NN, CY, NUF, TOL, ELIM, ALIM)
- IF (NUF.LT.0) GO TO 180
- NZ = NZ + NUF
- NN = NN - NUF
- C-----------------------------------------------------------------------
- C HERE NN=N OR NN=0 SINCE NUF=0,NN, OR -1 ON RETURN FROM CUOIK
- C IF NUF=NN, THEN CY(I)=CZERO FOR ALL I
- C-----------------------------------------------------------------------
- IF (NN.EQ.0) GO TO 100
- 60 CONTINUE
- IF (XX.LT.0.0E0) GO TO 70
- C-----------------------------------------------------------------------
- C RIGHT HALF PLANE COMPUTATION, REAL(Z).GE.0.
- C-----------------------------------------------------------------------
- CALL CBKNU(Z, FNU, KODE, NN, CY, NW, TOL, ELIM, ALIM)
- IF (NW.LT.0) GO TO 200
- NZ=NW
- RETURN
- C-----------------------------------------------------------------------
- C LEFT HALF PLANE COMPUTATION
- C PI/2.LT.ARG(Z).LE.PI AND -PI.LT.ARG(Z).LT.-PI/2.
- C-----------------------------------------------------------------------
- 70 CONTINUE
- IF (NZ.NE.0) GO TO 180
- MR = 1
- IF (YY.LT.0.0E0) MR = -1
- CALL CACON(Z, FNU, KODE, MR, NN, CY, NW, RL, FNUL, TOL, ELIM,
- * ALIM)
- IF (NW.LT.0) GO TO 200
- NZ=NW
- RETURN
- C-----------------------------------------------------------------------
- C UNIFORM ASYMPTOTIC EXPANSIONS FOR FNU.GT.FNUL
- C-----------------------------------------------------------------------
- 80 CONTINUE
- MR = 0
- IF (XX.GE.0.0E0) GO TO 90
- MR = 1
- IF (YY.LT.0.0E0) MR = -1
- 90 CONTINUE
- CALL CBUNK(Z, FNU, KODE, MR, NN, CY, NW, TOL, ELIM, ALIM)
- IF (NW.LT.0) GO TO 200
- NZ = NZ + NW
- RETURN
- 100 CONTINUE
- IF (XX.LT.0.0E0) GO TO 180
- RETURN
- 180 CONTINUE
- NZ = 0
- IERR=2
- RETURN
- 200 CONTINUE
- IF(NW.EQ.(-1)) GO TO 180
- NZ=0
- IERR=5
- RETURN
- 210 CONTINUE
- NZ=0
- IERR=4
- RETURN
- END
|