12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273 |
- *DECK CDOTC
- COMPLEX FUNCTION CDOTC (N, CX, INCX, CY, INCY)
- C***BEGIN PROLOGUE CDOTC
- C***PURPOSE Dot product of two complex vectors using the complex
- C conjugate of the first vector.
- C***LIBRARY SLATEC (BLAS)
- C***CATEGORY D1A4
- C***TYPE COMPLEX (CDOTC-C)
- C***KEYWORDS BLAS, INNER PRODUCT, LINEAR ALGEBRA, VECTOR
- C***AUTHOR Lawson, C. L., (JPL)
- C Hanson, R. J., (SNLA)
- C Kincaid, D. R., (U. of Texas)
- C Krogh, F. T., (JPL)
- C***DESCRIPTION
- C
- C B L A S Subprogram
- C Description of Parameters
- C
- C --Input--
- C N number of elements in input vector(s)
- C CX complex vector with N elements
- C INCX storage spacing between elements of CX
- C CY complex vector with N elements
- C INCY storage spacing between elements of CY
- C
- C --Output--
- C CDOTC complex result (zero if N .LE. 0)
- C
- C Returns the dot product of complex CX and CY, using CONJUGATE(CX)
- C CDOTC = SUM for I = 0 to N-1 of CONJ(CX(LX+I*INCX))*CY(LY+I*INCY),
- C where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is
- C defined in a similar way using INCY.
- C
- C***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
- C Krogh, Basic linear algebra subprograms for Fortran
- C usage, Algorithm No. 539, Transactions on Mathematical
- C Software 5, 3 (September 1979), pp. 308-323.
- C***ROUTINES CALLED (NONE)
- C***REVISION HISTORY (YYMMDD)
- C 791001 DATE WRITTEN
- C 890831 Modified array declarations. (WRB)
- C 890831 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 920310 Corrected definition of LX in DESCRIPTION. (WRB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE CDOTC
- COMPLEX CX(*),CY(*)
- C***FIRST EXECUTABLE STATEMENT CDOTC
- CDOTC = (0.0,0.0)
- IF (N .LE. 0) RETURN
- IF (INCX.EQ.INCY .AND. INCX.GT.0) GO TO 20
- C
- C Code for unequal or nonpositive increments.
- C
- KX = 1
- KY = 1
- IF (INCX .LT. 0) KX = 1+(1-N)*INCX
- IF (INCY .LT. 0) KY = 1+(1-N)*INCY
- DO 10 I = 1,N
- CDOTC = CDOTC + CONJG(CX(KX))*CY(KY)
- KX = KX + INCX
- KY = KY + INCY
- 10 CONTINUE
- RETURN
- C
- C Code for equal, positive increments.
- C
- 20 NS = N*INCX
- DO 30 I = 1,NS,INCX
- CDOTC = CDOTC + CONJG(CX(I))*CY(I)
- 30 CONTINUE
- RETURN
- END
|