123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282 |
- *DECK CGBCO
- SUBROUTINE CGBCO (ABD, LDA, N, ML, MU, IPVT, RCOND, Z)
- C***BEGIN PROLOGUE CGBCO
- C***PURPOSE Factor a band matrix by Gaussian elimination and
- C estimate the condition number of the matrix.
- C***LIBRARY SLATEC (LINPACK)
- C***CATEGORY D2C2
- C***TYPE COMPLEX (SGBCO-S, DGBCO-D, CGBCO-C)
- C***KEYWORDS BANDED, CONDITION NUMBER, LINEAR ALGEBRA, LINPACK,
- C MATRIX FACTORIZATION
- C***AUTHOR Moler, C. B., (U. of New Mexico)
- C***DESCRIPTION
- C
- C CGBCO factors a complex band matrix by Gaussian
- C elimination and estimates the condition of the matrix.
- C
- C If RCOND is not needed, CGBFA is slightly faster.
- C To solve A*X = B , follow CGBCO by CGBSL.
- C To compute INVERSE(A)*C , follow CGBCO by CGBSL.
- C To compute DETERMINANT(A) , follow CGBCO by CGBDI.
- C
- C On Entry
- C
- C ABD COMPLEX(LDA, N)
- C contains the matrix in band storage. The columns
- C of the matrix are stored in the columns of ABD and
- C the diagonals of the matrix are stored in rows
- C ML+1 through 2*ML+MU+1 of ABD .
- C See the comments below for details.
- C
- C LDA INTEGER
- C the leading dimension of the array ABD .
- C LDA must be .GE. 2*ML + MU + 1 .
- C
- C N INTEGER
- C the order of the original matrix.
- C
- C ML INTEGER
- C number of diagonals below the main diagonal.
- C 0 .LE. ML .LT. N .
- C
- C MU INTEGER
- C number of diagonals above the main diagonal.
- C 0 .LE. MU .LT. N .
- C More efficient if ML .LE. MU .
- C
- C On Return
- C
- C ABD an upper triangular matrix in band storage and
- C the multipliers which were used to obtain it.
- C The factorization can be written A = L*U where
- C L is a product of permutation and unit lower
- C triangular matrices and U is upper triangular.
- C
- C IPVT INTEGER(N)
- C an integer vector of pivot indices.
- C
- C RCOND REAL
- C an estimate of the reciprocal condition of A .
- C For the system A*X = B , relative perturbations
- C in A And B of size EPSILON may cause
- C relative perturbations in X of size EPSILON/RCOND .
- C If RCOND is so small that the logical expression
- C 1.0 + RCOND .EQ. 1.0
- C is true, then A may be singular to working
- C precision. In particular, RCOND is zero if
- C exact singularity is detected or the estimate
- C underflows.
- C
- C Z COMPLEX(N)
- C a work vector whose contents are usually unimportant.
- C If A is close to a singular matrix, then Z is
- C an approximate null vector in the sense that
- C NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .
- C
- C Band Storage
- C
- C if A is a band matrix, the following program segment
- C will set up the input.
- C
- C ML = (band width below the diagonal)
- C MU = (band width above the diagonal)
- C M = ML + MU + 1
- C DO 20 J = 1, N
- C I1 = MAX(1, J-MU)
- C I2 = MIN(N, J+Ml)
- C DO 10 I = I1, I2
- C K = I - J + M
- C ABD(K,J) = A(I,J)
- C 10 CONTINUE
- C 20 CONTINUE
- C
- C This uses rows ML+1 through 2*ML+MU+1 of ABD .
- C In addition, the first ML rows in ABD are used for
- C elements generated during the triangularization.
- C The total number of rows needed in ABD is 2*ML+MU+1 .
- C The ML+MU by ML+MU upper left triangle and the
- C ML by ML lower right triangle are not referenced.
- C
- C Example: If the original matrix is
- C
- C 11 12 13 0 0 0
- C 21 22 23 24 0 0
- C 0 32 33 34 35 0
- C 0 0 43 44 45 46
- C 0 0 0 54 55 56
- C 0 0 0 0 65 66
- C
- C then N = 6, ML = 1, MU = 2, LDA .GE. 5 and ABD should contain
- C
- C * * * + + + , * = not used
- C * * 13 24 35 46 , + = used for pivoting
- C * 12 23 34 45 56
- C 11 22 33 44 55 66
- C 21 32 43 54 65 *
- C
- C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
- C Stewart, LINPACK Users' Guide, SIAM, 1979.
- C***ROUTINES CALLED CAXPY, CDOTC, CGBFA, CSSCAL, SCASUM
- C***REVISION HISTORY (YYMMDD)
- C 780814 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890831 Modified array declarations. (WRB)
- C 890831 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 900326 Removed duplicate information from DESCRIPTION section.
- C (WRB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE CGBCO
- INTEGER LDA,N,ML,MU,IPVT(*)
- COMPLEX ABD(LDA,*),Z(*)
- REAL RCOND
- C
- COMPLEX CDOTC,EK,T,WK,WKM
- REAL ANORM,S,SCASUM,SM,YNORM
- INTEGER IS,INFO,J,JU,K,KB,KP1,L,LA,LM,LZ,M,MM
- COMPLEX ZDUM,ZDUM1,ZDUM2,CSIGN1
- REAL CABS1
- CABS1(ZDUM) = ABS(REAL(ZDUM)) + ABS(AIMAG(ZDUM))
- CSIGN1(ZDUM1,ZDUM2) = CABS1(ZDUM1)*(ZDUM2/CABS1(ZDUM2))
- C
- C COMPUTE 1-NORM OF A
- C
- C***FIRST EXECUTABLE STATEMENT CGBCO
- ANORM = 0.0E0
- L = ML + 1
- IS = L + MU
- DO 10 J = 1, N
- ANORM = MAX(ANORM,SCASUM(L,ABD(IS,J),1))
- IF (IS .GT. ML + 1) IS = IS - 1
- IF (J .LE. MU) L = L + 1
- IF (J .GE. N - ML) L = L - 1
- 10 CONTINUE
- C
- C FACTOR
- C
- CALL CGBFA(ABD,LDA,N,ML,MU,IPVT,INFO)
- C
- C RCOND = 1/(NORM(A)*(ESTIMATE OF NORM(INVERSE(A)))) .
- C ESTIMATE = NORM(Z)/NORM(Y) WHERE A*Z = Y AND CTRANS(A)*Y = E .
- C CTRANS(A) IS THE CONJUGATE TRANSPOSE OF A .
- C THE COMPONENTS OF E ARE CHOSEN TO CAUSE MAXIMUM LOCAL
- C GROWTH IN THE ELEMENTS OF W WHERE CTRANS(U)*W = E .
- C THE VECTORS ARE FREQUENTLY RESCALED TO AVOID OVERFLOW.
- C
- C SOLVE CTRANS(U)*W = E
- C
- EK = (1.0E0,0.0E0)
- DO 20 J = 1, N
- Z(J) = (0.0E0,0.0E0)
- 20 CONTINUE
- M = ML + MU + 1
- JU = 0
- DO 100 K = 1, N
- IF (CABS1(Z(K)) .NE. 0.0E0) EK = CSIGN1(EK,-Z(K))
- IF (CABS1(EK-Z(K)) .LE. CABS1(ABD(M,K))) GO TO 30
- S = CABS1(ABD(M,K))/CABS1(EK-Z(K))
- CALL CSSCAL(N,S,Z,1)
- EK = CMPLX(S,0.0E0)*EK
- 30 CONTINUE
- WK = EK - Z(K)
- WKM = -EK - Z(K)
- S = CABS1(WK)
- SM = CABS1(WKM)
- IF (CABS1(ABD(M,K)) .EQ. 0.0E0) GO TO 40
- WK = WK/CONJG(ABD(M,K))
- WKM = WKM/CONJG(ABD(M,K))
- GO TO 50
- 40 CONTINUE
- WK = (1.0E0,0.0E0)
- WKM = (1.0E0,0.0E0)
- 50 CONTINUE
- KP1 = K + 1
- JU = MIN(MAX(JU,MU+IPVT(K)),N)
- MM = M
- IF (KP1 .GT. JU) GO TO 90
- DO 60 J = KP1, JU
- MM = MM - 1
- SM = SM + CABS1(Z(J)+WKM*CONJG(ABD(MM,J)))
- Z(J) = Z(J) + WK*CONJG(ABD(MM,J))
- S = S + CABS1(Z(J))
- 60 CONTINUE
- IF (S .GE. SM) GO TO 80
- T = WKM - WK
- WK = WKM
- MM = M
- DO 70 J = KP1, JU
- MM = MM - 1
- Z(J) = Z(J) + T*CONJG(ABD(MM,J))
- 70 CONTINUE
- 80 CONTINUE
- 90 CONTINUE
- Z(K) = WK
- 100 CONTINUE
- S = 1.0E0/SCASUM(N,Z,1)
- CALL CSSCAL(N,S,Z,1)
- C
- C SOLVE CTRANS(L)*Y = W
- C
- DO 120 KB = 1, N
- K = N + 1 - KB
- LM = MIN(ML,N-K)
- IF (K .LT. N) Z(K) = Z(K) + CDOTC(LM,ABD(M+1,K),1,Z(K+1),1)
- IF (CABS1(Z(K)) .LE. 1.0E0) GO TO 110
- S = 1.0E0/CABS1(Z(K))
- CALL CSSCAL(N,S,Z,1)
- 110 CONTINUE
- L = IPVT(K)
- T = Z(L)
- Z(L) = Z(K)
- Z(K) = T
- 120 CONTINUE
- S = 1.0E0/SCASUM(N,Z,1)
- CALL CSSCAL(N,S,Z,1)
- C
- YNORM = 1.0E0
- C
- C SOLVE L*V = Y
- C
- DO 140 K = 1, N
- L = IPVT(K)
- T = Z(L)
- Z(L) = Z(K)
- Z(K) = T
- LM = MIN(ML,N-K)
- IF (K .LT. N) CALL CAXPY(LM,T,ABD(M+1,K),1,Z(K+1),1)
- IF (CABS1(Z(K)) .LE. 1.0E0) GO TO 130
- S = 1.0E0/CABS1(Z(K))
- CALL CSSCAL(N,S,Z,1)
- YNORM = S*YNORM
- 130 CONTINUE
- 140 CONTINUE
- S = 1.0E0/SCASUM(N,Z,1)
- CALL CSSCAL(N,S,Z,1)
- YNORM = S*YNORM
- C
- C SOLVE U*Z = W
- C
- DO 160 KB = 1, N
- K = N + 1 - KB
- IF (CABS1(Z(K)) .LE. CABS1(ABD(M,K))) GO TO 150
- S = CABS1(ABD(M,K))/CABS1(Z(K))
- CALL CSSCAL(N,S,Z,1)
- YNORM = S*YNORM
- 150 CONTINUE
- IF (CABS1(ABD(M,K)) .NE. 0.0E0) Z(K) = Z(K)/ABD(M,K)
- IF (CABS1(ABD(M,K)) .EQ. 0.0E0) Z(K) = (1.0E0,0.0E0)
- LM = MIN(K,M) - 1
- LA = M - LM
- LZ = K - LM
- T = -Z(K)
- CALL CAXPY(LM,T,ABD(LA,K),1,Z(LZ),1)
- 160 CONTINUE
- C MAKE ZNORM = 1.0
- S = 1.0E0/SCASUM(N,Z,1)
- CALL CSSCAL(N,S,Z,1)
- YNORM = S*YNORM
- C
- IF (ANORM .NE. 0.0E0) RCOND = YNORM/ANORM
- IF (ANORM .EQ. 0.0E0) RCOND = 0.0E0
- RETURN
- END
|