123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190 |
- *DECK CGBFA
- SUBROUTINE CGBFA (ABD, LDA, N, ML, MU, IPVT, INFO)
- C***BEGIN PROLOGUE CGBFA
- C***PURPOSE Factor a band matrix using Gaussian elimination.
- C***LIBRARY SLATEC (LINPACK)
- C***CATEGORY D2C2
- C***TYPE COMPLEX (SGBFA-S, DGBFA-D, CGBFA-C)
- C***KEYWORDS BANDED, LINEAR ALGEBRA, LINPACK, MATRIX FACTORIZATION
- C***AUTHOR Moler, C. B., (U. of New Mexico)
- C***DESCRIPTION
- C
- C CGBFA factors a complex band matrix by elimination.
- C
- C CGBFA is usually called by CGBCO, but it can be called
- C directly with a saving in time if RCOND is not needed.
- C
- C On Entry
- C
- C ABD COMPLEX(LDA, N)
- C contains the matrix in band storage. The columns
- C of the matrix are stored in the columns of ABD and
- C the diagonals of the matrix are stored in rows
- C ML+1 through 2*ML+MU+1 of ABD .
- C See the comments below for details.
- C
- C LDA INTEGER
- C the leading dimension of the array ABD .
- C LDA must be .GE. 2*ML + MU + 1 .
- C
- C N INTEGER
- C the order of the original matrix.
- C
- C ML INTEGER
- C number of diagonals below the main diagonal.
- C 0 .LE. ML .LT. N .
- C
- C MU INTEGER
- C number of diagonals above the main diagonal.
- C 0 .LE. MU .LT. N .
- C More efficient if ML .LE. MU .
- C On Return
- C
- C ABD an upper triangular matrix in band storage and
- C the multipliers which were used to obtain it.
- C The factorization can be written A = L*U where
- C L is a product of permutation and unit lower
- C triangular matrices and U is upper triangular.
- C
- C IPVT INTEGER(N)
- C an integer vector of pivot indices.
- C
- C INFO INTEGER
- C = 0 normal value.
- C = K if U(K,K) .EQ. 0.0 . This is not an error
- C condition for this subroutine, but it does
- C indicate that CGBSL will divide by zero if
- C called. Use RCOND in CGBCO for a reliable
- C indication of singularity.
- C
- C Band Storage
- C
- C If A is a band matrix, the following program segment
- C will set up the input.
- C
- C ML = (band width below the diagonal)
- C MU = (band width above the diagonal)
- C M = ML + MU + 1
- C DO 20 J = 1, N
- C I1 = MAX(1, J-MU)
- C I2 = MIN(N, J+ML)
- C DO 10 I = I1, I2
- C K = I - J + M
- C ABD(K,J) = A(I,J)
- C 10 CONTINUE
- C 20 CONTINUE
- C
- C This uses rows ML+1 through 2*ML+MU+1 of ABD .
- C In addition, the first ML rows in ABD are used for
- C elements generated during the triangularization.
- C The total number of rows needed in ABD is 2*ML+MU+1 .
- C The ML+MU by ML+MU upper left triangle and the
- C ML by ML lower right triangle are not referenced.
- C
- C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
- C Stewart, LINPACK Users' Guide, SIAM, 1979.
- C***ROUTINES CALLED CAXPY, CSCAL, ICAMAX
- C***REVISION HISTORY (YYMMDD)
- C 780814 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890831 Modified array declarations. (WRB)
- C 890831 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 900326 Removed duplicate information from DESCRIPTION section.
- C (WRB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE CGBFA
- INTEGER LDA,N,ML,MU,IPVT(*),INFO
- COMPLEX ABD(LDA,*)
- C
- COMPLEX T
- INTEGER I,ICAMAX,I0,J,JU,JZ,J0,J1,K,KP1,L,LM,M,MM,NM1
- COMPLEX ZDUM
- REAL CABS1
- CABS1(ZDUM) = ABS(REAL(ZDUM)) + ABS(AIMAG(ZDUM))
- C
- C***FIRST EXECUTABLE STATEMENT CGBFA
- M = ML + MU + 1
- INFO = 0
- C
- C ZERO INITIAL FILL-IN COLUMNS
- C
- J0 = MU + 2
- J1 = MIN(N,M) - 1
- IF (J1 .LT. J0) GO TO 30
- DO 20 JZ = J0, J1
- I0 = M + 1 - JZ
- DO 10 I = I0, ML
- ABD(I,JZ) = (0.0E0,0.0E0)
- 10 CONTINUE
- 20 CONTINUE
- 30 CONTINUE
- JZ = J1
- JU = 0
- C
- C GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING
- C
- NM1 = N - 1
- IF (NM1 .LT. 1) GO TO 130
- DO 120 K = 1, NM1
- KP1 = K + 1
- C
- C ZERO NEXT FILL-IN COLUMN
- C
- JZ = JZ + 1
- IF (JZ .GT. N) GO TO 50
- IF (ML .LT. 1) GO TO 50
- DO 40 I = 1, ML
- ABD(I,JZ) = (0.0E0,0.0E0)
- 40 CONTINUE
- 50 CONTINUE
- C
- C FIND L = PIVOT INDEX
- C
- LM = MIN(ML,N-K)
- L = ICAMAX(LM+1,ABD(M,K),1) + M - 1
- IPVT(K) = L + K - M
- C
- C ZERO PIVOT IMPLIES THIS COLUMN ALREADY TRIANGULARIZED
- C
- IF (CABS1(ABD(L,K)) .EQ. 0.0E0) GO TO 100
- C
- C INTERCHANGE IF NECESSARY
- C
- IF (L .EQ. M) GO TO 60
- T = ABD(L,K)
- ABD(L,K) = ABD(M,K)
- ABD(M,K) = T
- 60 CONTINUE
- C
- C COMPUTE MULTIPLIERS
- C
- T = -(1.0E0,0.0E0)/ABD(M,K)
- CALL CSCAL(LM,T,ABD(M+1,K),1)
- C
- C ROW ELIMINATION WITH COLUMN INDEXING
- C
- JU = MIN(MAX(JU,MU+IPVT(K)),N)
- MM = M
- IF (JU .LT. KP1) GO TO 90
- DO 80 J = KP1, JU
- L = L - 1
- MM = MM - 1
- T = ABD(L,J)
- IF (L .EQ. MM) GO TO 70
- ABD(L,J) = ABD(MM,J)
- ABD(MM,J) = T
- 70 CONTINUE
- CALL CAXPY(LM,T,ABD(M+1,K),1,ABD(MM+1,J),1)
- 80 CONTINUE
- 90 CONTINUE
- GO TO 110
- 100 CONTINUE
- INFO = K
- 110 CONTINUE
- 120 CONTINUE
- 130 CONTINUE
- IPVT(N) = N
- IF (CABS1(ABD(M,N)) .EQ. 0.0E0) INFO = N
- RETURN
- END
|