cgbmv.f 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329
  1. *DECK CGBMV
  2. SUBROUTINE CGBMV (TRANS, M, N, KL, KU, ALPHA, A, LDA, X, INCX,
  3. $ BETA, Y, INCY)
  4. C***BEGIN PROLOGUE CGBMV
  5. C***PURPOSE Multiply a complex vector by a complex general band matrix.
  6. C***LIBRARY SLATEC (BLAS)
  7. C***CATEGORY D1B4
  8. C***TYPE COMPLEX (SGBMV-S, DGBMV-D, CGBMV-C)
  9. C***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
  10. C***AUTHOR Dongarra, J. J., (ANL)
  11. C Du Croz, J., (NAG)
  12. C Hammarling, S., (NAG)
  13. C Hanson, R. J., (SNLA)
  14. C***DESCRIPTION
  15. C
  16. C CGBMV performs one of the matrix-vector operations
  17. C
  18. C y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, or
  19. C
  20. C y := alpha*conjg( A' )*x + beta*y,
  21. C
  22. C where alpha and beta are scalars, x and y are vectors and A is an
  23. C m by n band matrix, with kl sub-diagonals and ku super-diagonals.
  24. C
  25. C Parameters
  26. C ==========
  27. C
  28. C TRANS - CHARACTER*1.
  29. C On entry, TRANS specifies the operation to be performed as
  30. C follows:
  31. C
  32. C TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
  33. C
  34. C TRANS = 'T' or 't' y := alpha*A'*x + beta*y.
  35. C
  36. C TRANS = 'C' or 'c' y := alpha*conjg( A' )*x + beta*y.
  37. C
  38. C Unchanged on exit.
  39. C
  40. C M - INTEGER.
  41. C On entry, M specifies the number of rows of the matrix A.
  42. C M must be at least zero.
  43. C Unchanged on exit.
  44. C
  45. C N - INTEGER.
  46. C On entry, N specifies the number of columns of the matrix A.
  47. C N must be at least zero.
  48. C Unchanged on exit.
  49. C
  50. C KL - INTEGER.
  51. C On entry, KL specifies the number of sub-diagonals of the
  52. C matrix A. KL must satisfy 0 .le. KL.
  53. C Unchanged on exit.
  54. C
  55. C KU - INTEGER.
  56. C On entry, KU specifies the number of super-diagonals of the
  57. C matrix A. KU must satisfy 0 .le. KU.
  58. C Unchanged on exit.
  59. C
  60. C ALPHA - COMPLEX .
  61. C On entry, ALPHA specifies the scalar alpha.
  62. C Unchanged on exit.
  63. C
  64. C A - COMPLEX array of DIMENSION ( LDA, n ).
  65. C Before entry, the leading ( kl + ku + 1 ) by n part of the
  66. C array A must contain the matrix of coefficients, supplied
  67. C column by column, with the leading diagonal of the matrix in
  68. C row ( ku + 1 ) of the array, the first super-diagonal
  69. C starting at position 2 in row ku, the first sub-diagonal
  70. C starting at position 1 in row ( ku + 2 ), and so on.
  71. C Elements in the array A that do not correspond to elements
  72. C in the band matrix (such as the top left ku by ku triangle)
  73. C are not referenced.
  74. C The following program segment will transfer a band matrix
  75. C from conventional full matrix storage to band storage:
  76. C
  77. C DO 20, J = 1, N
  78. C K = KU + 1 - J
  79. C DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL )
  80. C A( K + I, J ) = matrix( I, J )
  81. C 10 CONTINUE
  82. C 20 CONTINUE
  83. C
  84. C Unchanged on exit.
  85. C
  86. C LDA - INTEGER.
  87. C On entry, LDA specifies the first dimension of A as declared
  88. C in the calling (sub) program. LDA must be at least
  89. C ( kl + ku + 1 ).
  90. C Unchanged on exit.
  91. C
  92. C X - COMPLEX array of DIMENSION at least
  93. C ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
  94. C and at least
  95. C ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
  96. C Before entry, the incremented array X must contain the
  97. C vector x.
  98. C Unchanged on exit.
  99. C
  100. C INCX - INTEGER.
  101. C On entry, INCX specifies the increment for the elements of
  102. C X. INCX must not be zero.
  103. C Unchanged on exit.
  104. C
  105. C BETA - COMPLEX .
  106. C On entry, BETA specifies the scalar beta. When BETA is
  107. C supplied as zero then Y need not be set on input.
  108. C Unchanged on exit.
  109. C
  110. C Y - COMPLEX array of DIMENSION at least
  111. C ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
  112. C and at least
  113. C ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
  114. C Before entry, the incremented array Y must contain the
  115. C vector y. On exit, Y is overwritten by the updated vector y.
  116. C
  117. C
  118. C INCY - INTEGER.
  119. C On entry, INCY specifies the increment for the elements of
  120. C Y. INCY must not be zero.
  121. C Unchanged on exit.
  122. C
  123. C***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
  124. C Hanson, R. J. An extended set of Fortran basic linear
  125. C algebra subprograms. ACM TOMS, Vol. 14, No. 1,
  126. C pp. 1-17, March 1988.
  127. C***ROUTINES CALLED LSAME, XERBLA
  128. C***REVISION HISTORY (YYMMDD)
  129. C 861022 DATE WRITTEN
  130. C 910605 Modified to meet SLATEC prologue standards. Only comment
  131. C lines were modified. (BKS)
  132. C***END PROLOGUE CGBMV
  133. C .. Scalar Arguments ..
  134. COMPLEX ALPHA, BETA
  135. INTEGER INCX, INCY, KL, KU, LDA, M, N
  136. CHARACTER*1 TRANS
  137. C .. Array Arguments ..
  138. COMPLEX A( LDA, * ), X( * ), Y( * )
  139. C .. Parameters ..
  140. COMPLEX ONE
  141. PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
  142. COMPLEX ZERO
  143. PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
  144. C .. Local Scalars ..
  145. COMPLEX TEMP
  146. INTEGER I, INFO, IX, IY, J, JX, JY, K, KUP1, KX, KY,
  147. $ LENX, LENY
  148. LOGICAL NOCONJ
  149. C .. External Functions ..
  150. LOGICAL LSAME
  151. EXTERNAL LSAME
  152. C .. External Subroutines ..
  153. EXTERNAL XERBLA
  154. C .. Intrinsic Functions ..
  155. INTRINSIC CONJG, MAX, MIN
  156. C***FIRST EXECUTABLE STATEMENT CGBMV
  157. C
  158. C Test the input parameters.
  159. C
  160. INFO = 0
  161. IF ( .NOT.LSAME( TRANS, 'N' ).AND.
  162. $ .NOT.LSAME( TRANS, 'T' ).AND.
  163. $ .NOT.LSAME( TRANS, 'C' ) )THEN
  164. INFO = 1
  165. ELSE IF( M.LT.0 )THEN
  166. INFO = 2
  167. ELSE IF( N.LT.0 )THEN
  168. INFO = 3
  169. ELSE IF( KL.LT.0 )THEN
  170. INFO = 4
  171. ELSE IF( KU.LT.0 )THEN
  172. INFO = 5
  173. ELSE IF( LDA.LT.( KL + KU + 1 ) )THEN
  174. INFO = 8
  175. ELSE IF( INCX.EQ.0 )THEN
  176. INFO = 10
  177. ELSE IF( INCY.EQ.0 )THEN
  178. INFO = 13
  179. END IF
  180. IF( INFO.NE.0 )THEN
  181. CALL XERBLA( 'CGBMV ', INFO )
  182. RETURN
  183. END IF
  184. C
  185. C Quick return if possible.
  186. C
  187. IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
  188. $ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
  189. $ RETURN
  190. C
  191. NOCONJ = LSAME( TRANS, 'T' )
  192. C
  193. C Set LENX and LENY, the lengths of the vectors x and y, and set
  194. C up the start points in X and Y.
  195. C
  196. IF( LSAME( TRANS, 'N' ) )THEN
  197. LENX = N
  198. LENY = M
  199. ELSE
  200. LENX = M
  201. LENY = N
  202. END IF
  203. IF( INCX.GT.0 )THEN
  204. KX = 1
  205. ELSE
  206. KX = 1 - ( LENX - 1 )*INCX
  207. END IF
  208. IF( INCY.GT.0 )THEN
  209. KY = 1
  210. ELSE
  211. KY = 1 - ( LENY - 1 )*INCY
  212. END IF
  213. C
  214. C Start the operations. In this version the elements of A are
  215. C accessed sequentially with one pass through the band part of A.
  216. C
  217. C First form y := beta*y.
  218. C
  219. IF( BETA.NE.ONE )THEN
  220. IF( INCY.EQ.1 )THEN
  221. IF( BETA.EQ.ZERO )THEN
  222. DO 10, I = 1, LENY
  223. Y( I ) = ZERO
  224. 10 CONTINUE
  225. ELSE
  226. DO 20, I = 1, LENY
  227. Y( I ) = BETA*Y( I )
  228. 20 CONTINUE
  229. END IF
  230. ELSE
  231. IY = KY
  232. IF( BETA.EQ.ZERO )THEN
  233. DO 30, I = 1, LENY
  234. Y( IY ) = ZERO
  235. IY = IY + INCY
  236. 30 CONTINUE
  237. ELSE
  238. DO 40, I = 1, LENY
  239. Y( IY ) = BETA*Y( IY )
  240. IY = IY + INCY
  241. 40 CONTINUE
  242. END IF
  243. END IF
  244. END IF
  245. IF( ALPHA.EQ.ZERO )
  246. $ RETURN
  247. KUP1 = KU + 1
  248. IF( LSAME( TRANS, 'N' ) )THEN
  249. C
  250. C Form y := alpha*A*x + y.
  251. C
  252. JX = KX
  253. IF( INCY.EQ.1 )THEN
  254. DO 60, J = 1, N
  255. IF( X( JX ).NE.ZERO )THEN
  256. TEMP = ALPHA*X( JX )
  257. K = KUP1 - J
  258. DO 50, I = MAX( 1, J - KU ), MIN( M, J + KL )
  259. Y( I ) = Y( I ) + TEMP*A( K + I, J )
  260. 50 CONTINUE
  261. END IF
  262. JX = JX + INCX
  263. 60 CONTINUE
  264. ELSE
  265. DO 80, J = 1, N
  266. IF( X( JX ).NE.ZERO )THEN
  267. TEMP = ALPHA*X( JX )
  268. IY = KY
  269. K = KUP1 - J
  270. DO 70, I = MAX( 1, J - KU ), MIN( M, J + KL )
  271. Y( IY ) = Y( IY ) + TEMP*A( K + I, J )
  272. IY = IY + INCY
  273. 70 CONTINUE
  274. END IF
  275. JX = JX + INCX
  276. IF( J.GT.KU )
  277. $ KY = KY + INCY
  278. 80 CONTINUE
  279. END IF
  280. ELSE
  281. C
  282. C Form y := alpha*A'*x + y or y := alpha*conjg( A' )*x + y.
  283. C
  284. JY = KY
  285. IF( INCX.EQ.1 )THEN
  286. DO 110, J = 1, N
  287. TEMP = ZERO
  288. K = KUP1 - J
  289. IF( NOCONJ )THEN
  290. DO 90, I = MAX( 1, J - KU ), MIN( M, J + KL )
  291. TEMP = TEMP + A( K + I, J )*X( I )
  292. 90 CONTINUE
  293. ELSE
  294. DO 100, I = MAX( 1, J - KU ), MIN( M, J + KL )
  295. TEMP = TEMP + CONJG( A( K + I, J ) )*X( I )
  296. 100 CONTINUE
  297. END IF
  298. Y( JY ) = Y( JY ) + ALPHA*TEMP
  299. JY = JY + INCY
  300. 110 CONTINUE
  301. ELSE
  302. DO 140, J = 1, N
  303. TEMP = ZERO
  304. IX = KX
  305. K = KUP1 - J
  306. IF( NOCONJ )THEN
  307. DO 120, I = MAX( 1, J - KU ), MIN( M, J + KL )
  308. TEMP = TEMP + A( K + I, J )*X( IX )
  309. IX = IX + INCX
  310. 120 CONTINUE
  311. ELSE
  312. DO 130, I = MAX( 1, J - KU ), MIN( M, J + KL )
  313. TEMP = TEMP + CONJG( A( K + I, J ) )*X( IX )
  314. IX = IX + INCX
  315. 130 CONTINUE
  316. END IF
  317. Y( JY ) = Y( JY ) + ALPHA*TEMP
  318. JY = JY + INCY
  319. IF( J.GT.KU )
  320. $ KX = KX + INCX
  321. 140 CONTINUE
  322. END IF
  323. END IF
  324. C
  325. RETURN
  326. C
  327. C End of CGBMV .
  328. C
  329. END