cgeco.f 6.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211
  1. *DECK CGECO
  2. SUBROUTINE CGECO (A, LDA, N, IPVT, RCOND, Z)
  3. C***BEGIN PROLOGUE CGECO
  4. C***PURPOSE Factor a matrix using Gaussian elimination and estimate
  5. C the condition number of the matrix.
  6. C***LIBRARY SLATEC (LINPACK)
  7. C***CATEGORY D2C1
  8. C***TYPE COMPLEX (SGECO-S, DGECO-D, CGECO-C)
  9. C***KEYWORDS CONDITION NUMBER, GENERAL MATRIX, LINEAR ALGEBRA, LINPACK,
  10. C MATRIX FACTORIZATION
  11. C***AUTHOR Moler, C. B., (U. of New Mexico)
  12. C***DESCRIPTION
  13. C
  14. C CGECO factors a complex matrix by Gaussian elimination
  15. C and estimates the condition of the matrix.
  16. C
  17. C If RCOND is not needed, CGEFA is slightly faster.
  18. C To solve A*X = B , follow CGECO By CGESL.
  19. C To Compute INVERSE(A)*C , follow CGECO by CGESL.
  20. C To compute DETERMINANT(A) , follow CGECO by CGEDI.
  21. C To compute INVERSE(A) , follow CGECO by CGEDI.
  22. C
  23. C On Entry
  24. C
  25. C A COMPLEX(LDA, N)
  26. C the matrix to be factored.
  27. C
  28. C LDA INTEGER
  29. C the leading dimension of the array A .
  30. C
  31. C N INTEGER
  32. C the order of the matrix A .
  33. C
  34. C On Return
  35. C
  36. C A an upper triangular matrix and the multipliers
  37. C which were used to obtain it.
  38. C The factorization can be written A = L*U where
  39. C L is a product of permutation and unit lower
  40. C triangular matrices and U is upper triangular.
  41. C
  42. C IPVT INTEGER(N)
  43. C an integer vector of pivot indices.
  44. C
  45. C RCOND REAL
  46. C an estimate of the reciprocal condition of A .
  47. C For the system A*X = B , relative perturbations
  48. C in A and B of size EPSILON may cause
  49. C relative perturbations in X of size EPSILON/RCOND .
  50. C If RCOND is so small that the logical expression
  51. C 1.0 + RCOND .EQ. 1.0
  52. C is true, then A may be singular to working
  53. C precision. In particular, RCOND is zero if
  54. C exact singularity is detected or the estimate
  55. C underflows.
  56. C
  57. C Z COMPLEX(N)
  58. C a work vector whose contents are usually unimportant.
  59. C If A is close to a singular matrix, then Z is
  60. C an approximate null vector in the sense that
  61. C NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .
  62. C
  63. C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
  64. C Stewart, LINPACK Users' Guide, SIAM, 1979.
  65. C***ROUTINES CALLED CAXPY, CDOTC, CGEFA, CSSCAL, SCASUM
  66. C***REVISION HISTORY (YYMMDD)
  67. C 780814 DATE WRITTEN
  68. C 890531 Changed all specific intrinsics to generic. (WRB)
  69. C 890831 Modified array declarations. (WRB)
  70. C 890831 REVISION DATE from Version 3.2
  71. C 891214 Prologue converted to Version 4.0 format. (BAB)
  72. C 900326 Removed duplicate information from DESCRIPTION section.
  73. C (WRB)
  74. C 920501 Reformatted the REFERENCES section. (WRB)
  75. C***END PROLOGUE CGECO
  76. INTEGER LDA,N,IPVT(*)
  77. COMPLEX A(LDA,*),Z(*)
  78. REAL RCOND
  79. C
  80. COMPLEX CDOTC,EK,T,WK,WKM
  81. REAL ANORM,S,SCASUM,SM,YNORM
  82. INTEGER INFO,J,K,KB,KP1,L
  83. COMPLEX ZDUM,ZDUM1,ZDUM2,CSIGN1
  84. REAL CABS1
  85. CABS1(ZDUM) = ABS(REAL(ZDUM)) + ABS(AIMAG(ZDUM))
  86. CSIGN1(ZDUM1,ZDUM2) = CABS1(ZDUM1)*(ZDUM2/CABS1(ZDUM2))
  87. C
  88. C COMPUTE 1-NORM OF A
  89. C
  90. C***FIRST EXECUTABLE STATEMENT CGECO
  91. ANORM = 0.0E0
  92. DO 10 J = 1, N
  93. ANORM = MAX(ANORM,SCASUM(N,A(1,J),1))
  94. 10 CONTINUE
  95. C
  96. C FACTOR
  97. C
  98. CALL CGEFA(A,LDA,N,IPVT,INFO)
  99. C
  100. C RCOND = 1/(NORM(A)*(ESTIMATE OF NORM(INVERSE(A)))) .
  101. C ESTIMATE = NORM(Z)/NORM(Y) WHERE A*Z = Y AND CTRANS(A)*Y = E .
  102. C CTRANS(A) IS THE CONJUGATE TRANSPOSE OF A .
  103. C THE COMPONENTS OF E ARE CHOSEN TO CAUSE MAXIMUM LOCAL
  104. C GROWTH IN THE ELEMENTS OF W WHERE CTRANS(U)*W = E .
  105. C THE VECTORS ARE FREQUENTLY RESCALED TO AVOID OVERFLOW.
  106. C
  107. C SOLVE CTRANS(U)*W = E
  108. C
  109. EK = (1.0E0,0.0E0)
  110. DO 20 J = 1, N
  111. Z(J) = (0.0E0,0.0E0)
  112. 20 CONTINUE
  113. DO 100 K = 1, N
  114. IF (CABS1(Z(K)) .NE. 0.0E0) EK = CSIGN1(EK,-Z(K))
  115. IF (CABS1(EK-Z(K)) .LE. CABS1(A(K,K))) GO TO 30
  116. S = CABS1(A(K,K))/CABS1(EK-Z(K))
  117. CALL CSSCAL(N,S,Z,1)
  118. EK = CMPLX(S,0.0E0)*EK
  119. 30 CONTINUE
  120. WK = EK - Z(K)
  121. WKM = -EK - Z(K)
  122. S = CABS1(WK)
  123. SM = CABS1(WKM)
  124. IF (CABS1(A(K,K)) .EQ. 0.0E0) GO TO 40
  125. WK = WK/CONJG(A(K,K))
  126. WKM = WKM/CONJG(A(K,K))
  127. GO TO 50
  128. 40 CONTINUE
  129. WK = (1.0E0,0.0E0)
  130. WKM = (1.0E0,0.0E0)
  131. 50 CONTINUE
  132. KP1 = K + 1
  133. IF (KP1 .GT. N) GO TO 90
  134. DO 60 J = KP1, N
  135. SM = SM + CABS1(Z(J)+WKM*CONJG(A(K,J)))
  136. Z(J) = Z(J) + WK*CONJG(A(K,J))
  137. S = S + CABS1(Z(J))
  138. 60 CONTINUE
  139. IF (S .GE. SM) GO TO 80
  140. T = WKM - WK
  141. WK = WKM
  142. DO 70 J = KP1, N
  143. Z(J) = Z(J) + T*CONJG(A(K,J))
  144. 70 CONTINUE
  145. 80 CONTINUE
  146. 90 CONTINUE
  147. Z(K) = WK
  148. 100 CONTINUE
  149. S = 1.0E0/SCASUM(N,Z,1)
  150. CALL CSSCAL(N,S,Z,1)
  151. C
  152. C SOLVE CTRANS(L)*Y = W
  153. C
  154. DO 120 KB = 1, N
  155. K = N + 1 - KB
  156. IF (K .LT. N) Z(K) = Z(K) + CDOTC(N-K,A(K+1,K),1,Z(K+1),1)
  157. IF (CABS1(Z(K)) .LE. 1.0E0) GO TO 110
  158. S = 1.0E0/CABS1(Z(K))
  159. CALL CSSCAL(N,S,Z,1)
  160. 110 CONTINUE
  161. L = IPVT(K)
  162. T = Z(L)
  163. Z(L) = Z(K)
  164. Z(K) = T
  165. 120 CONTINUE
  166. S = 1.0E0/SCASUM(N,Z,1)
  167. CALL CSSCAL(N,S,Z,1)
  168. C
  169. YNORM = 1.0E0
  170. C
  171. C SOLVE L*V = Y
  172. C
  173. DO 140 K = 1, N
  174. L = IPVT(K)
  175. T = Z(L)
  176. Z(L) = Z(K)
  177. Z(K) = T
  178. IF (K .LT. N) CALL CAXPY(N-K,T,A(K+1,K),1,Z(K+1),1)
  179. IF (CABS1(Z(K)) .LE. 1.0E0) GO TO 130
  180. S = 1.0E0/CABS1(Z(K))
  181. CALL CSSCAL(N,S,Z,1)
  182. YNORM = S*YNORM
  183. 130 CONTINUE
  184. 140 CONTINUE
  185. S = 1.0E0/SCASUM(N,Z,1)
  186. CALL CSSCAL(N,S,Z,1)
  187. YNORM = S*YNORM
  188. C
  189. C SOLVE U*Z = V
  190. C
  191. DO 160 KB = 1, N
  192. K = N + 1 - KB
  193. IF (CABS1(Z(K)) .LE. CABS1(A(K,K))) GO TO 150
  194. S = CABS1(A(K,K))/CABS1(Z(K))
  195. CALL CSSCAL(N,S,Z,1)
  196. YNORM = S*YNORM
  197. 150 CONTINUE
  198. IF (CABS1(A(K,K)) .NE. 0.0E0) Z(K) = Z(K)/A(K,K)
  199. IF (CABS1(A(K,K)) .EQ. 0.0E0) Z(K) = (1.0E0,0.0E0)
  200. T = -Z(K)
  201. CALL CAXPY(K-1,T,A(1,K),1,Z(1),1)
  202. 160 CONTINUE
  203. C MAKE ZNORM = 1.0
  204. S = 1.0E0/SCASUM(N,Z,1)
  205. CALL CSSCAL(N,S,Z,1)
  206. YNORM = S*YNORM
  207. C
  208. IF (ANORM .NE. 0.0E0) RCOND = YNORM/ANORM
  209. IF (ANORM .EQ. 0.0E0) RCOND = 0.0E0
  210. RETURN
  211. END