123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211 |
- *DECK CGECO
- SUBROUTINE CGECO (A, LDA, N, IPVT, RCOND, Z)
- C***BEGIN PROLOGUE CGECO
- C***PURPOSE Factor a matrix using Gaussian elimination and estimate
- C the condition number of the matrix.
- C***LIBRARY SLATEC (LINPACK)
- C***CATEGORY D2C1
- C***TYPE COMPLEX (SGECO-S, DGECO-D, CGECO-C)
- C***KEYWORDS CONDITION NUMBER, GENERAL MATRIX, LINEAR ALGEBRA, LINPACK,
- C MATRIX FACTORIZATION
- C***AUTHOR Moler, C. B., (U. of New Mexico)
- C***DESCRIPTION
- C
- C CGECO factors a complex matrix by Gaussian elimination
- C and estimates the condition of the matrix.
- C
- C If RCOND is not needed, CGEFA is slightly faster.
- C To solve A*X = B , follow CGECO By CGESL.
- C To Compute INVERSE(A)*C , follow CGECO by CGESL.
- C To compute DETERMINANT(A) , follow CGECO by CGEDI.
- C To compute INVERSE(A) , follow CGECO by CGEDI.
- C
- C On Entry
- C
- C A COMPLEX(LDA, N)
- C the matrix to be factored.
- C
- C LDA INTEGER
- C the leading dimension of the array A .
- C
- C N INTEGER
- C the order of the matrix A .
- C
- C On Return
- C
- C A an upper triangular matrix and the multipliers
- C which were used to obtain it.
- C The factorization can be written A = L*U where
- C L is a product of permutation and unit lower
- C triangular matrices and U is upper triangular.
- C
- C IPVT INTEGER(N)
- C an integer vector of pivot indices.
- C
- C RCOND REAL
- C an estimate of the reciprocal condition of A .
- C For the system A*X = B , relative perturbations
- C in A and B of size EPSILON may cause
- C relative perturbations in X of size EPSILON/RCOND .
- C If RCOND is so small that the logical expression
- C 1.0 + RCOND .EQ. 1.0
- C is true, then A may be singular to working
- C precision. In particular, RCOND is zero if
- C exact singularity is detected or the estimate
- C underflows.
- C
- C Z COMPLEX(N)
- C a work vector whose contents are usually unimportant.
- C If A is close to a singular matrix, then Z is
- C an approximate null vector in the sense that
- C NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .
- C
- C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
- C Stewart, LINPACK Users' Guide, SIAM, 1979.
- C***ROUTINES CALLED CAXPY, CDOTC, CGEFA, CSSCAL, SCASUM
- C***REVISION HISTORY (YYMMDD)
- C 780814 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890831 Modified array declarations. (WRB)
- C 890831 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 900326 Removed duplicate information from DESCRIPTION section.
- C (WRB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE CGECO
- INTEGER LDA,N,IPVT(*)
- COMPLEX A(LDA,*),Z(*)
- REAL RCOND
- C
- COMPLEX CDOTC,EK,T,WK,WKM
- REAL ANORM,S,SCASUM,SM,YNORM
- INTEGER INFO,J,K,KB,KP1,L
- COMPLEX ZDUM,ZDUM1,ZDUM2,CSIGN1
- REAL CABS1
- CABS1(ZDUM) = ABS(REAL(ZDUM)) + ABS(AIMAG(ZDUM))
- CSIGN1(ZDUM1,ZDUM2) = CABS1(ZDUM1)*(ZDUM2/CABS1(ZDUM2))
- C
- C COMPUTE 1-NORM OF A
- C
- C***FIRST EXECUTABLE STATEMENT CGECO
- ANORM = 0.0E0
- DO 10 J = 1, N
- ANORM = MAX(ANORM,SCASUM(N,A(1,J),1))
- 10 CONTINUE
- C
- C FACTOR
- C
- CALL CGEFA(A,LDA,N,IPVT,INFO)
- C
- C RCOND = 1/(NORM(A)*(ESTIMATE OF NORM(INVERSE(A)))) .
- C ESTIMATE = NORM(Z)/NORM(Y) WHERE A*Z = Y AND CTRANS(A)*Y = E .
- C CTRANS(A) IS THE CONJUGATE TRANSPOSE OF A .
- C THE COMPONENTS OF E ARE CHOSEN TO CAUSE MAXIMUM LOCAL
- C GROWTH IN THE ELEMENTS OF W WHERE CTRANS(U)*W = E .
- C THE VECTORS ARE FREQUENTLY RESCALED TO AVOID OVERFLOW.
- C
- C SOLVE CTRANS(U)*W = E
- C
- EK = (1.0E0,0.0E0)
- DO 20 J = 1, N
- Z(J) = (0.0E0,0.0E0)
- 20 CONTINUE
- DO 100 K = 1, N
- IF (CABS1(Z(K)) .NE. 0.0E0) EK = CSIGN1(EK,-Z(K))
- IF (CABS1(EK-Z(K)) .LE. CABS1(A(K,K))) GO TO 30
- S = CABS1(A(K,K))/CABS1(EK-Z(K))
- CALL CSSCAL(N,S,Z,1)
- EK = CMPLX(S,0.0E0)*EK
- 30 CONTINUE
- WK = EK - Z(K)
- WKM = -EK - Z(K)
- S = CABS1(WK)
- SM = CABS1(WKM)
- IF (CABS1(A(K,K)) .EQ. 0.0E0) GO TO 40
- WK = WK/CONJG(A(K,K))
- WKM = WKM/CONJG(A(K,K))
- GO TO 50
- 40 CONTINUE
- WK = (1.0E0,0.0E0)
- WKM = (1.0E0,0.0E0)
- 50 CONTINUE
- KP1 = K + 1
- IF (KP1 .GT. N) GO TO 90
- DO 60 J = KP1, N
- SM = SM + CABS1(Z(J)+WKM*CONJG(A(K,J)))
- Z(J) = Z(J) + WK*CONJG(A(K,J))
- S = S + CABS1(Z(J))
- 60 CONTINUE
- IF (S .GE. SM) GO TO 80
- T = WKM - WK
- WK = WKM
- DO 70 J = KP1, N
- Z(J) = Z(J) + T*CONJG(A(K,J))
- 70 CONTINUE
- 80 CONTINUE
- 90 CONTINUE
- Z(K) = WK
- 100 CONTINUE
- S = 1.0E0/SCASUM(N,Z,1)
- CALL CSSCAL(N,S,Z,1)
- C
- C SOLVE CTRANS(L)*Y = W
- C
- DO 120 KB = 1, N
- K = N + 1 - KB
- IF (K .LT. N) Z(K) = Z(K) + CDOTC(N-K,A(K+1,K),1,Z(K+1),1)
- IF (CABS1(Z(K)) .LE. 1.0E0) GO TO 110
- S = 1.0E0/CABS1(Z(K))
- CALL CSSCAL(N,S,Z,1)
- 110 CONTINUE
- L = IPVT(K)
- T = Z(L)
- Z(L) = Z(K)
- Z(K) = T
- 120 CONTINUE
- S = 1.0E0/SCASUM(N,Z,1)
- CALL CSSCAL(N,S,Z,1)
- C
- YNORM = 1.0E0
- C
- C SOLVE L*V = Y
- C
- DO 140 K = 1, N
- L = IPVT(K)
- T = Z(L)
- Z(L) = Z(K)
- Z(K) = T
- IF (K .LT. N) CALL CAXPY(N-K,T,A(K+1,K),1,Z(K+1),1)
- IF (CABS1(Z(K)) .LE. 1.0E0) GO TO 130
- S = 1.0E0/CABS1(Z(K))
- CALL CSSCAL(N,S,Z,1)
- YNORM = S*YNORM
- 130 CONTINUE
- 140 CONTINUE
- S = 1.0E0/SCASUM(N,Z,1)
- CALL CSSCAL(N,S,Z,1)
- YNORM = S*YNORM
- C
- C SOLVE U*Z = V
- C
- DO 160 KB = 1, N
- K = N + 1 - KB
- IF (CABS1(Z(K)) .LE. CABS1(A(K,K))) GO TO 150
- S = CABS1(A(K,K))/CABS1(Z(K))
- CALL CSSCAL(N,S,Z,1)
- YNORM = S*YNORM
- 150 CONTINUE
- IF (CABS1(A(K,K)) .NE. 0.0E0) Z(K) = Z(K)/A(K,K)
- IF (CABS1(A(K,K)) .EQ. 0.0E0) Z(K) = (1.0E0,0.0E0)
- T = -Z(K)
- CALL CAXPY(K-1,T,A(1,K),1,Z(1),1)
- 160 CONTINUE
- C MAKE ZNORM = 1.0
- S = 1.0E0/SCASUM(N,Z,1)
- CALL CSSCAL(N,S,Z,1)
- YNORM = S*YNORM
- C
- IF (ANORM .NE. 0.0E0) RCOND = YNORM/ANORM
- IF (ANORM .EQ. 0.0E0) RCOND = 0.0E0
- RETURN
- END
|