123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187 |
- *DECK CGEEV
- SUBROUTINE CGEEV (A, LDA, N, E, V, LDV, WORK, JOB, INFO)
- C***BEGIN PROLOGUE CGEEV
- C***PURPOSE Compute the eigenvalues and, optionally, the eigenvectors
- C of a complex general matrix.
- C***LIBRARY SLATEC
- C***CATEGORY D4A4
- C***TYPE COMPLEX (SGEEV-S, CGEEV-C)
- C***KEYWORDS EIGENVALUES, EIGENVECTORS, GENERAL MATRIX
- C***AUTHOR Kahaner, D. K., (NBS)
- C Moler, C. B., (U. of New Mexico)
- C Stewart, G. W., (U. of Maryland)
- C***DESCRIPTION
- C
- C Abstract
- C CGEEV computes the eigenvalues and, optionally,
- C the eigenvectors of a general complex matrix.
- C
- C Call Sequence Parameters-
- C (The values of parameters marked with * (star) will be changed
- C by CGEEV.)
- C
- C A* COMPLEX(LDA,N)
- C complex nonsymmetric input matrix.
- C
- C LDA INTEGER
- C set by the user to
- C the leading dimension of the complex array A.
- C
- C N INTEGER
- C set by the user to
- C the order of the matrices A and V, and
- C the number of elements in E.
- C
- C E* COMPLEX(N)
- C on return from CGEEV E contains the eigenvalues of A.
- C See also INFO below.
- C
- C V* COMPLEX(LDV,N)
- C on return from CGEEV if the user has set JOB
- C = 0 V is not referenced.
- C = nonzero the N eigenvectors of A are stored in the
- C first N columns of V. See also INFO below.
- C (If the input matrix A is nearly degenerate, V
- C will be badly conditioned, i.e. have nearly
- C dependent columns.)
- C
- C LDV INTEGER
- C set by the user to
- C the leading dimension of the array V if JOB is also
- C set nonzero. In that case N must be .LE. LDV.
- C If JOB is set to zero LDV is not referenced.
- C
- C WORK* REAL(3N)
- C temporary storage vector. Contents changed by CGEEV.
- C
- C JOB INTEGER
- C set by the user to
- C = 0 eigenvalues only to be calculated by CGEEV.
- C neither V nor LDV are referenced.
- C = nonzero eigenvalues and vectors to be calculated.
- C In this case A & V must be distinct arrays.
- C Also, if LDA > LDV, CGEEV changes all the
- C elements of A thru column N. If LDA < LDV,
- C CGEEV changes all the elements of V through
- C column N. If LDA = LDV only A(I,J) and V(I,
- C J) for I,J = 1,...,N are changed by CGEEV.
- C
- C INFO* INTEGER
- C on return from CGEEV the value of INFO is
- C = 0 normal return, calculation successful.
- C = K if the eigenvalue iteration fails to converge,
- C eigenvalues K+1 through N are correct, but
- C no eigenvectors were computed even if they were
- C requested (JOB nonzero).
- C
- C Error Messages
- C No. 1 recoverable N is greater than LDA
- C No. 2 recoverable N is less than one.
- C No. 3 recoverable JOB is nonzero and N is greater than LDV
- C No. 4 warning LDA > LDV, elements of A other than the
- C N by N input elements have been changed
- C No. 5 warning LDA < LDV, elements of V other than the
- C N by N output elements have been changed
- C
- C***REFERENCES (NONE)
- C***ROUTINES CALLED CBABK2, CBAL, COMQR, COMQR2, CORTH, SCOPY, XERMSG
- C***REVISION HISTORY (YYMMDD)
- C 800808 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890531 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
- C 900326 Removed duplicate information from DESCRIPTION section.
- C (WRB)
- C***END PROLOGUE CGEEV
- INTEGER I,IHI,ILO,INFO,J,K,L,LDA,LDV,MDIM,N
- REAL A(*),E(*),WORK(*),V(*)
- C***FIRST EXECUTABLE STATEMENT CGEEV
- IF (N .GT. LDA) CALL XERMSG ('SLATEC', 'CGEEV', 'N .GT. LDA.', 1,
- + 1)
- IF(N .GT. LDA) RETURN
- IF (N .LT. 1) CALL XERMSG ('SLATEC', 'CGEEV', 'N .LT. 1', 2, 1)
- IF(N .LT. 1) RETURN
- IF(N .EQ. 1 .AND. JOB .EQ. 0) GO TO 35
- MDIM = 2 * LDA
- IF(JOB .EQ. 0) GO TO 5
- IF (N .GT. LDV) CALL XERMSG ('SLATEC', 'CGEEV',
- + 'JOB .NE. 0 AND N .GT. LDV.', 3, 1)
- IF(N .GT. LDV) RETURN
- IF(N .EQ. 1) GO TO 35
- C
- C REARRANGE A IF NECESSARY WHEN LDA.GT.LDV AND JOB .NE.0
- C
- MDIM = MIN(MDIM,2 * LDV)
- IF (LDA .LT. LDV) CALL XERMSG ('SLATEC', 'CGEEV',
- + 'LDA.LT.LDV, ELEMENTS OF V OTHER THAN THE N BY N OUTPUT ' //
- + 'ELEMENTS HAVE BEEN CHANGED.', 5, 0)
- IF(LDA.LE.LDV) GO TO 5
- CALL XERMSG ('SLATEC', 'CGEEV',
- + 'LDA.GT.LDV, ELEMENTS OF A OTHER THAN THE N BY N INPUT ' //
- + 'ELEMENTS HAVE BEEN CHANGED.', 4, 0)
- L = N - 1
- DO 4 J=1,L
- I = 2 * N
- M = 1+J*2*LDV
- K = 1+J*2*LDA
- CALL SCOPY(I,A(K),1,A(M),1)
- 4 CONTINUE
- 5 CONTINUE
- C
- C SEPARATE REAL AND IMAGINARY PARTS
- C
- DO 6 J = 1, N
- K = (J-1) * MDIM +1
- L = K + N
- CALL SCOPY(N,A(K+1),2,WORK(1),1)
- CALL SCOPY(N,A(K),2,A(K),1)
- CALL SCOPY(N,WORK(1),1,A(L),1)
- 6 CONTINUE
- C
- C SCALE AND ORTHOGONAL REDUCTION TO HESSENBERG.
- C
- CALL CBAL(MDIM,N,A(1),A(N+1),ILO,IHI,WORK(1))
- CALL CORTH(MDIM,N,ILO,IHI,A(1),A(N+1),WORK(N+1),WORK(2*N+1))
- IF(JOB .NE. 0) GO TO 10
- C
- C EIGENVALUES ONLY
- C
- CALL COMQR(MDIM,N,ILO,IHI,A(1),A(N+1),E(1),E(N+1),INFO)
- GO TO 30
- C
- C EIGENVALUES AND EIGENVECTORS.
- C
- 10 CALL COMQR2(MDIM,N,ILO,IHI,WORK(N+1),WORK(2*N+1),A(1),A(N+1),
- 1 E(1),E(N+1),V(1),V(N+1),INFO)
- IF (INFO .NE. 0) GO TO 30
- CALL CBABK2(MDIM,N,ILO,IHI,WORK(1),N,V(1),V(N+1))
- C
- C CONVERT EIGENVECTORS TO COMPLEX STORAGE.
- C
- DO 20 J = 1,N
- K = (J-1) * MDIM + 1
- I = (J-1) * 2 * LDV + 1
- L = K + N
- CALL SCOPY(N,V(K),1,WORK(1),1)
- CALL SCOPY(N,V(L),1,V(I+1),2)
- CALL SCOPY(N,WORK(1),1,V(I),2)
- 20 CONTINUE
- C
- C CONVERT EIGENVALUES TO COMPLEX STORAGE.
- C
- 30 CALL SCOPY(N,E(1),1,WORK(1),1)
- CALL SCOPY(N,E(N+1),1,E(2),2)
- CALL SCOPY(N,WORK(1),1,E(1),2)
- RETURN
- C
- C TAKE CARE OF N=1 CASE
- C
- 35 E(1) = A(1)
- E(2) = A(2)
- INFO = 0
- IF(JOB .EQ. 0) RETURN
- V(1) = A(1)
- V(2) = A(2)
- RETURN
- END
|