123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421 |
- *DECK CGEMM
- SUBROUTINE CGEMM (TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB,
- $ BETA, C, LDC)
- C***BEGIN PROLOGUE CGEMM
- C***PURPOSE Multiply a complex general matrix by a complex general
- C matrix.
- C***LIBRARY SLATEC (BLAS)
- C***CATEGORY D1B6
- C***TYPE COMPLEX (SGEMM-S, DGEMM-D, CGEMM-C)
- C***KEYWORDS LEVEL 3 BLAS, LINEAR ALGEBRA
- C***AUTHOR Dongarra, J., (ANL)
- C Duff, I., (AERE)
- C Du Croz, J., (NAG)
- C Hammarling, S. (NAG)
- C***DESCRIPTION
- C
- C CGEMM performs one of the matrix-matrix operations
- C
- C C := alpha*op( A )*op( B ) + beta*C,
- C
- C where op( X ) is one of
- C
- C op( X ) = X or op( X ) = X' or op( X ) = conjg( X' ),
- C
- C alpha and beta are scalars, and A, B and C are matrices, with op( A )
- C an m by k matrix, op( B ) a k by n matrix and C an m by n matrix.
- C
- C Parameters
- C ==========
- C
- C TRANSA - CHARACTER*1.
- C On entry, TRANSA specifies the form of op( A ) to be used in
- C the matrix multiplication as follows:
- C
- C TRANSA = 'N' or 'n', op( A ) = A.
- C
- C TRANSA = 'T' or 't', op( A ) = A'.
- C
- C TRANSA = 'C' or 'c', op( A ) = conjg( A' ).
- C
- C Unchanged on exit.
- C
- C TRANSB - CHARACTER*1.
- C On entry, TRANSB specifies the form of op( B ) to be used in
- C the matrix multiplication as follows:
- C
- C TRANSB = 'N' or 'n', op( B ) = B.
- C
- C TRANSB = 'T' or 't', op( B ) = B'.
- C
- C TRANSB = 'C' or 'c', op( B ) = conjg( B' ).
- C
- C Unchanged on exit.
- C
- C M - INTEGER.
- C On entry, M specifies the number of rows of the matrix
- C op( A ) and of the matrix C. M must be at least zero.
- C Unchanged on exit.
- C
- C N - INTEGER.
- C On entry, N specifies the number of columns of the matrix
- C op( B ) and the number of columns of the matrix C. N must be
- C at least zero.
- C Unchanged on exit.
- C
- C K - INTEGER.
- C On entry, K specifies the number of columns of the matrix
- C op( A ) and the number of rows of the matrix op( B ). K must
- C be at least zero.
- C Unchanged on exit.
- C
- C ALPHA - COMPLEX .
- C On entry, ALPHA specifies the scalar alpha.
- C Unchanged on exit.
- C
- C A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is
- C k when TRANSA = 'N' or 'n', and is m otherwise.
- C Before entry with TRANSA = 'N' or 'n', the leading m by k
- C part of the array A must contain the matrix A, otherwise
- C the leading k by m part of the array A must contain the
- C matrix A.
- C Unchanged on exit.
- C
- C LDA - INTEGER.
- C On entry, LDA specifies the first dimension of A as declared
- C in the calling (sub) program. When TRANSA = 'N' or 'n' then
- C LDA must be at least max( 1, m ), otherwise LDA must be at
- C least max( 1, k ).
- C Unchanged on exit.
- C
- C B - COMPLEX array of DIMENSION ( LDB, kb ), where kb is
- C n when TRANSB = 'N' or 'n', and is k otherwise.
- C Before entry with TRANSB = 'N' or 'n', the leading k by n
- C part of the array B must contain the matrix B, otherwise
- C the leading n by k part of the array B must contain the
- C matrix B.
- C Unchanged on exit.
- C
- C LDB - INTEGER.
- C On entry, LDB specifies the first dimension of B as declared
- C in the calling (sub) program. When TRANSB = 'N' or 'n' then
- C LDB must be at least max( 1, k ), otherwise LDB must be at
- C least max( 1, n ).
- C Unchanged on exit.
- C
- C BETA - COMPLEX .
- C On entry, BETA specifies the scalar beta. When BETA is
- C supplied as zero then C need not be set on input.
- C Unchanged on exit.
- C
- C C - COMPLEX array of DIMENSION ( LDC, n ).
- C Before entry, the leading m by n part of the array C must
- C contain the matrix C, except when beta is zero, in which
- C case C need not be set on entry.
- C On exit, the array C is overwritten by the m by n matrix
- C ( alpha*op( A )*op( B ) + beta*C ).
- C
- C LDC - INTEGER.
- C On entry, LDC specifies the first dimension of C as declared
- C in the calling (sub) program. LDC must be at least
- C max( 1, m ).
- C Unchanged on exit.
- C
- C***REFERENCES Dongarra, J., Du Croz, J., Duff, I., and Hammarling, S.
- C A set of level 3 basic linear algebra subprograms.
- C ACM TOMS, Vol. 16, No. 1, pp. 1-17, March 1990.
- C***ROUTINES CALLED LSAME, XERBLA
- C***REVISION HISTORY (YYMMDD)
- C 890208 DATE WRITTEN
- C 910605 Modified to meet SLATEC prologue standards. Only comment
- C lines were modified. (BKS)
- C***END PROLOGUE CGEMM
- C .. Scalar Arguments ..
- CHARACTER*1 TRANSA, TRANSB
- INTEGER M, N, K, LDA, LDB, LDC
- COMPLEX ALPHA, BETA
- C .. Array Arguments ..
- COMPLEX A( LDA, * ), B( LDB, * ), C( LDC, * )
- C .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- C .. External Subroutines ..
- EXTERNAL XERBLA
- C .. Intrinsic Functions ..
- INTRINSIC CONJG, MAX
- C .. Local Scalars ..
- LOGICAL CONJA, CONJB, NOTA, NOTB
- INTEGER I, INFO, J, L, NCOLA, NROWA, NROWB
- COMPLEX TEMP
- C .. Parameters ..
- COMPLEX ONE
- PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
- COMPLEX ZERO
- PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
- C***FIRST EXECUTABLE STATEMENT CGEMM
- C
- C Set NOTA and NOTB as true if A and B respectively are not
- C conjugated or transposed, set CONJA and CONJB as true if A and
- C B respectively are to be transposed but not conjugated and set
- C NROWA, NCOLA and NROWB as the number of rows and columns of A
- C and the number of rows of B respectively.
- C
- NOTA = LSAME( TRANSA, 'N' )
- NOTB = LSAME( TRANSB, 'N' )
- CONJA = LSAME( TRANSA, 'C' )
- CONJB = LSAME( TRANSB, 'C' )
- IF( NOTA )THEN
- NROWA = M
- NCOLA = K
- ELSE
- NROWA = K
- NCOLA = M
- END IF
- IF( NOTB )THEN
- NROWB = K
- ELSE
- NROWB = N
- END IF
- C
- C Test the input parameters.
- C
- INFO = 0
- IF( ( .NOT.NOTA ).AND.
- $ ( .NOT.CONJA ).AND.
- $ ( .NOT.LSAME( TRANSA, 'T' ) ) )THEN
- INFO = 1
- ELSE IF( ( .NOT.NOTB ).AND.
- $ ( .NOT.CONJB ).AND.
- $ ( .NOT.LSAME( TRANSB, 'T' ) ) )THEN
- INFO = 2
- ELSE IF( M .LT.0 )THEN
- INFO = 3
- ELSE IF( N .LT.0 )THEN
- INFO = 4
- ELSE IF( K .LT.0 )THEN
- INFO = 5
- ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
- INFO = 8
- ELSE IF( LDB.LT.MAX( 1, NROWB ) )THEN
- INFO = 10
- ELSE IF( LDC.LT.MAX( 1, M ) )THEN
- INFO = 13
- END IF
- IF( INFO.NE.0 )THEN
- CALL XERBLA( 'CGEMM ', INFO )
- RETURN
- END IF
- C
- C Quick return if possible.
- C
- IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
- $ ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) )
- $ RETURN
- C
- C And when alpha.eq.zero.
- C
- IF( ALPHA.EQ.ZERO )THEN
- IF( BETA.EQ.ZERO )THEN
- DO 20, J = 1, N
- DO 10, I = 1, M
- C( I, J ) = ZERO
- 10 CONTINUE
- 20 CONTINUE
- ELSE
- DO 40, J = 1, N
- DO 30, I = 1, M
- C( I, J ) = BETA*C( I, J )
- 30 CONTINUE
- 40 CONTINUE
- END IF
- RETURN
- END IF
- C
- C Start the operations.
- C
- IF( NOTB )THEN
- IF( NOTA )THEN
- C
- C Form C := alpha*A*B + beta*C.
- C
- DO 90, J = 1, N
- IF( BETA.EQ.ZERO )THEN
- DO 50, I = 1, M
- C( I, J ) = ZERO
- 50 CONTINUE
- ELSE IF( BETA.NE.ONE )THEN
- DO 60, I = 1, M
- C( I, J ) = BETA*C( I, J )
- 60 CONTINUE
- END IF
- DO 80, L = 1, K
- IF( B( L, J ).NE.ZERO )THEN
- TEMP = ALPHA*B( L, J )
- DO 70, I = 1, M
- C( I, J ) = C( I, J ) + TEMP*A( I, L )
- 70 CONTINUE
- END IF
- 80 CONTINUE
- 90 CONTINUE
- ELSE IF( CONJA )THEN
- C
- C Form C := alpha*conjg( A' )*B + beta*C.
- C
- DO 120, J = 1, N
- DO 110, I = 1, M
- TEMP = ZERO
- DO 100, L = 1, K
- TEMP = TEMP + CONJG( A( L, I ) )*B( L, J )
- 100 CONTINUE
- IF( BETA.EQ.ZERO )THEN
- C( I, J ) = ALPHA*TEMP
- ELSE
- C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
- END IF
- 110 CONTINUE
- 120 CONTINUE
- ELSE
- C
- C Form C := alpha*A'*B + beta*C
- C
- DO 150, J = 1, N
- DO 140, I = 1, M
- TEMP = ZERO
- DO 130, L = 1, K
- TEMP = TEMP + A( L, I )*B( L, J )
- 130 CONTINUE
- IF( BETA.EQ.ZERO )THEN
- C( I, J ) = ALPHA*TEMP
- ELSE
- C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
- END IF
- 140 CONTINUE
- 150 CONTINUE
- END IF
- ELSE IF( NOTA )THEN
- IF( CONJB )THEN
- C
- C Form C := alpha*A*conjg( B' ) + beta*C.
- C
- DO 200, J = 1, N
- IF( BETA.EQ.ZERO )THEN
- DO 160, I = 1, M
- C( I, J ) = ZERO
- 160 CONTINUE
- ELSE IF( BETA.NE.ONE )THEN
- DO 170, I = 1, M
- C( I, J ) = BETA*C( I, J )
- 170 CONTINUE
- END IF
- DO 190, L = 1, K
- IF( B( J, L ).NE.ZERO )THEN
- TEMP = ALPHA*CONJG( B( J, L ) )
- DO 180, I = 1, M
- C( I, J ) = C( I, J ) + TEMP*A( I, L )
- 180 CONTINUE
- END IF
- 190 CONTINUE
- 200 CONTINUE
- ELSE
- C
- C Form C := alpha*A*B' + beta*C
- C
- DO 250, J = 1, N
- IF( BETA.EQ.ZERO )THEN
- DO 210, I = 1, M
- C( I, J ) = ZERO
- 210 CONTINUE
- ELSE IF( BETA.NE.ONE )THEN
- DO 220, I = 1, M
- C( I, J ) = BETA*C( I, J )
- 220 CONTINUE
- END IF
- DO 240, L = 1, K
- IF( B( J, L ).NE.ZERO )THEN
- TEMP = ALPHA*B( J, L )
- DO 230, I = 1, M
- C( I, J ) = C( I, J ) + TEMP*A( I, L )
- 230 CONTINUE
- END IF
- 240 CONTINUE
- 250 CONTINUE
- END IF
- ELSE IF( CONJA )THEN
- IF( CONJB )THEN
- C
- C Form C := alpha*conjg( A' )*conjg( B' ) + beta*C.
- C
- DO 280, J = 1, N
- DO 270, I = 1, M
- TEMP = ZERO
- DO 260, L = 1, K
- TEMP = TEMP + CONJG( A( L, I ) )*CONJG( B( J, L ) )
- 260 CONTINUE
- IF( BETA.EQ.ZERO )THEN
- C( I, J ) = ALPHA*TEMP
- ELSE
- C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
- END IF
- 270 CONTINUE
- 280 CONTINUE
- ELSE
- C
- C Form C := alpha*conjg( A' )*B' + beta*C
- C
- DO 310, J = 1, N
- DO 300, I = 1, M
- TEMP = ZERO
- DO 290, L = 1, K
- TEMP = TEMP + CONJG( A( L, I ) )*B( J, L )
- 290 CONTINUE
- IF( BETA.EQ.ZERO )THEN
- C( I, J ) = ALPHA*TEMP
- ELSE
- C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
- END IF
- 300 CONTINUE
- 310 CONTINUE
- END IF
- ELSE
- IF( CONJB )THEN
- C
- C Form C := alpha*A'*conjg( B' ) + beta*C
- C
- DO 340, J = 1, N
- DO 330, I = 1, M
- TEMP = ZERO
- DO 320, L = 1, K
- TEMP = TEMP + A( L, I )*CONJG( B( J, L ) )
- 320 CONTINUE
- IF( BETA.EQ.ZERO )THEN
- C( I, J ) = ALPHA*TEMP
- ELSE
- C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
- END IF
- 330 CONTINUE
- 340 CONTINUE
- ELSE
- C
- C Form C := alpha*A'*B' + beta*C
- C
- DO 370, J = 1, N
- DO 360, I = 1, M
- TEMP = ZERO
- DO 350, L = 1, K
- TEMP = TEMP + A( L, I )*B( J, L )
- 350 CONTINUE
- IF( BETA.EQ.ZERO )THEN
- C( I, J ) = ALPHA*TEMP
- ELSE
- C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
- END IF
- 360 CONTINUE
- 370 CONTINUE
- END IF
- END IF
- C
- RETURN
- C
- C End of CGEMM .
- C
- END
|