cgemm.f 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421
  1. *DECK CGEMM
  2. SUBROUTINE CGEMM (TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB,
  3. $ BETA, C, LDC)
  4. C***BEGIN PROLOGUE CGEMM
  5. C***PURPOSE Multiply a complex general matrix by a complex general
  6. C matrix.
  7. C***LIBRARY SLATEC (BLAS)
  8. C***CATEGORY D1B6
  9. C***TYPE COMPLEX (SGEMM-S, DGEMM-D, CGEMM-C)
  10. C***KEYWORDS LEVEL 3 BLAS, LINEAR ALGEBRA
  11. C***AUTHOR Dongarra, J., (ANL)
  12. C Duff, I., (AERE)
  13. C Du Croz, J., (NAG)
  14. C Hammarling, S. (NAG)
  15. C***DESCRIPTION
  16. C
  17. C CGEMM performs one of the matrix-matrix operations
  18. C
  19. C C := alpha*op( A )*op( B ) + beta*C,
  20. C
  21. C where op( X ) is one of
  22. C
  23. C op( X ) = X or op( X ) = X' or op( X ) = conjg( X' ),
  24. C
  25. C alpha and beta are scalars, and A, B and C are matrices, with op( A )
  26. C an m by k matrix, op( B ) a k by n matrix and C an m by n matrix.
  27. C
  28. C Parameters
  29. C ==========
  30. C
  31. C TRANSA - CHARACTER*1.
  32. C On entry, TRANSA specifies the form of op( A ) to be used in
  33. C the matrix multiplication as follows:
  34. C
  35. C TRANSA = 'N' or 'n', op( A ) = A.
  36. C
  37. C TRANSA = 'T' or 't', op( A ) = A'.
  38. C
  39. C TRANSA = 'C' or 'c', op( A ) = conjg( A' ).
  40. C
  41. C Unchanged on exit.
  42. C
  43. C TRANSB - CHARACTER*1.
  44. C On entry, TRANSB specifies the form of op( B ) to be used in
  45. C the matrix multiplication as follows:
  46. C
  47. C TRANSB = 'N' or 'n', op( B ) = B.
  48. C
  49. C TRANSB = 'T' or 't', op( B ) = B'.
  50. C
  51. C TRANSB = 'C' or 'c', op( B ) = conjg( B' ).
  52. C
  53. C Unchanged on exit.
  54. C
  55. C M - INTEGER.
  56. C On entry, M specifies the number of rows of the matrix
  57. C op( A ) and of the matrix C. M must be at least zero.
  58. C Unchanged on exit.
  59. C
  60. C N - INTEGER.
  61. C On entry, N specifies the number of columns of the matrix
  62. C op( B ) and the number of columns of the matrix C. N must be
  63. C at least zero.
  64. C Unchanged on exit.
  65. C
  66. C K - INTEGER.
  67. C On entry, K specifies the number of columns of the matrix
  68. C op( A ) and the number of rows of the matrix op( B ). K must
  69. C be at least zero.
  70. C Unchanged on exit.
  71. C
  72. C ALPHA - COMPLEX .
  73. C On entry, ALPHA specifies the scalar alpha.
  74. C Unchanged on exit.
  75. C
  76. C A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is
  77. C k when TRANSA = 'N' or 'n', and is m otherwise.
  78. C Before entry with TRANSA = 'N' or 'n', the leading m by k
  79. C part of the array A must contain the matrix A, otherwise
  80. C the leading k by m part of the array A must contain the
  81. C matrix A.
  82. C Unchanged on exit.
  83. C
  84. C LDA - INTEGER.
  85. C On entry, LDA specifies the first dimension of A as declared
  86. C in the calling (sub) program. When TRANSA = 'N' or 'n' then
  87. C LDA must be at least max( 1, m ), otherwise LDA must be at
  88. C least max( 1, k ).
  89. C Unchanged on exit.
  90. C
  91. C B - COMPLEX array of DIMENSION ( LDB, kb ), where kb is
  92. C n when TRANSB = 'N' or 'n', and is k otherwise.
  93. C Before entry with TRANSB = 'N' or 'n', the leading k by n
  94. C part of the array B must contain the matrix B, otherwise
  95. C the leading n by k part of the array B must contain the
  96. C matrix B.
  97. C Unchanged on exit.
  98. C
  99. C LDB - INTEGER.
  100. C On entry, LDB specifies the first dimension of B as declared
  101. C in the calling (sub) program. When TRANSB = 'N' or 'n' then
  102. C LDB must be at least max( 1, k ), otherwise LDB must be at
  103. C least max( 1, n ).
  104. C Unchanged on exit.
  105. C
  106. C BETA - COMPLEX .
  107. C On entry, BETA specifies the scalar beta. When BETA is
  108. C supplied as zero then C need not be set on input.
  109. C Unchanged on exit.
  110. C
  111. C C - COMPLEX array of DIMENSION ( LDC, n ).
  112. C Before entry, the leading m by n part of the array C must
  113. C contain the matrix C, except when beta is zero, in which
  114. C case C need not be set on entry.
  115. C On exit, the array C is overwritten by the m by n matrix
  116. C ( alpha*op( A )*op( B ) + beta*C ).
  117. C
  118. C LDC - INTEGER.
  119. C On entry, LDC specifies the first dimension of C as declared
  120. C in the calling (sub) program. LDC must be at least
  121. C max( 1, m ).
  122. C Unchanged on exit.
  123. C
  124. C***REFERENCES Dongarra, J., Du Croz, J., Duff, I., and Hammarling, S.
  125. C A set of level 3 basic linear algebra subprograms.
  126. C ACM TOMS, Vol. 16, No. 1, pp. 1-17, March 1990.
  127. C***ROUTINES CALLED LSAME, XERBLA
  128. C***REVISION HISTORY (YYMMDD)
  129. C 890208 DATE WRITTEN
  130. C 910605 Modified to meet SLATEC prologue standards. Only comment
  131. C lines were modified. (BKS)
  132. C***END PROLOGUE CGEMM
  133. C .. Scalar Arguments ..
  134. CHARACTER*1 TRANSA, TRANSB
  135. INTEGER M, N, K, LDA, LDB, LDC
  136. COMPLEX ALPHA, BETA
  137. C .. Array Arguments ..
  138. COMPLEX A( LDA, * ), B( LDB, * ), C( LDC, * )
  139. C .. External Functions ..
  140. LOGICAL LSAME
  141. EXTERNAL LSAME
  142. C .. External Subroutines ..
  143. EXTERNAL XERBLA
  144. C .. Intrinsic Functions ..
  145. INTRINSIC CONJG, MAX
  146. C .. Local Scalars ..
  147. LOGICAL CONJA, CONJB, NOTA, NOTB
  148. INTEGER I, INFO, J, L, NCOLA, NROWA, NROWB
  149. COMPLEX TEMP
  150. C .. Parameters ..
  151. COMPLEX ONE
  152. PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
  153. COMPLEX ZERO
  154. PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
  155. C***FIRST EXECUTABLE STATEMENT CGEMM
  156. C
  157. C Set NOTA and NOTB as true if A and B respectively are not
  158. C conjugated or transposed, set CONJA and CONJB as true if A and
  159. C B respectively are to be transposed but not conjugated and set
  160. C NROWA, NCOLA and NROWB as the number of rows and columns of A
  161. C and the number of rows of B respectively.
  162. C
  163. NOTA = LSAME( TRANSA, 'N' )
  164. NOTB = LSAME( TRANSB, 'N' )
  165. CONJA = LSAME( TRANSA, 'C' )
  166. CONJB = LSAME( TRANSB, 'C' )
  167. IF( NOTA )THEN
  168. NROWA = M
  169. NCOLA = K
  170. ELSE
  171. NROWA = K
  172. NCOLA = M
  173. END IF
  174. IF( NOTB )THEN
  175. NROWB = K
  176. ELSE
  177. NROWB = N
  178. END IF
  179. C
  180. C Test the input parameters.
  181. C
  182. INFO = 0
  183. IF( ( .NOT.NOTA ).AND.
  184. $ ( .NOT.CONJA ).AND.
  185. $ ( .NOT.LSAME( TRANSA, 'T' ) ) )THEN
  186. INFO = 1
  187. ELSE IF( ( .NOT.NOTB ).AND.
  188. $ ( .NOT.CONJB ).AND.
  189. $ ( .NOT.LSAME( TRANSB, 'T' ) ) )THEN
  190. INFO = 2
  191. ELSE IF( M .LT.0 )THEN
  192. INFO = 3
  193. ELSE IF( N .LT.0 )THEN
  194. INFO = 4
  195. ELSE IF( K .LT.0 )THEN
  196. INFO = 5
  197. ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
  198. INFO = 8
  199. ELSE IF( LDB.LT.MAX( 1, NROWB ) )THEN
  200. INFO = 10
  201. ELSE IF( LDC.LT.MAX( 1, M ) )THEN
  202. INFO = 13
  203. END IF
  204. IF( INFO.NE.0 )THEN
  205. CALL XERBLA( 'CGEMM ', INFO )
  206. RETURN
  207. END IF
  208. C
  209. C Quick return if possible.
  210. C
  211. IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
  212. $ ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) )
  213. $ RETURN
  214. C
  215. C And when alpha.eq.zero.
  216. C
  217. IF( ALPHA.EQ.ZERO )THEN
  218. IF( BETA.EQ.ZERO )THEN
  219. DO 20, J = 1, N
  220. DO 10, I = 1, M
  221. C( I, J ) = ZERO
  222. 10 CONTINUE
  223. 20 CONTINUE
  224. ELSE
  225. DO 40, J = 1, N
  226. DO 30, I = 1, M
  227. C( I, J ) = BETA*C( I, J )
  228. 30 CONTINUE
  229. 40 CONTINUE
  230. END IF
  231. RETURN
  232. END IF
  233. C
  234. C Start the operations.
  235. C
  236. IF( NOTB )THEN
  237. IF( NOTA )THEN
  238. C
  239. C Form C := alpha*A*B + beta*C.
  240. C
  241. DO 90, J = 1, N
  242. IF( BETA.EQ.ZERO )THEN
  243. DO 50, I = 1, M
  244. C( I, J ) = ZERO
  245. 50 CONTINUE
  246. ELSE IF( BETA.NE.ONE )THEN
  247. DO 60, I = 1, M
  248. C( I, J ) = BETA*C( I, J )
  249. 60 CONTINUE
  250. END IF
  251. DO 80, L = 1, K
  252. IF( B( L, J ).NE.ZERO )THEN
  253. TEMP = ALPHA*B( L, J )
  254. DO 70, I = 1, M
  255. C( I, J ) = C( I, J ) + TEMP*A( I, L )
  256. 70 CONTINUE
  257. END IF
  258. 80 CONTINUE
  259. 90 CONTINUE
  260. ELSE IF( CONJA )THEN
  261. C
  262. C Form C := alpha*conjg( A' )*B + beta*C.
  263. C
  264. DO 120, J = 1, N
  265. DO 110, I = 1, M
  266. TEMP = ZERO
  267. DO 100, L = 1, K
  268. TEMP = TEMP + CONJG( A( L, I ) )*B( L, J )
  269. 100 CONTINUE
  270. IF( BETA.EQ.ZERO )THEN
  271. C( I, J ) = ALPHA*TEMP
  272. ELSE
  273. C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
  274. END IF
  275. 110 CONTINUE
  276. 120 CONTINUE
  277. ELSE
  278. C
  279. C Form C := alpha*A'*B + beta*C
  280. C
  281. DO 150, J = 1, N
  282. DO 140, I = 1, M
  283. TEMP = ZERO
  284. DO 130, L = 1, K
  285. TEMP = TEMP + A( L, I )*B( L, J )
  286. 130 CONTINUE
  287. IF( BETA.EQ.ZERO )THEN
  288. C( I, J ) = ALPHA*TEMP
  289. ELSE
  290. C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
  291. END IF
  292. 140 CONTINUE
  293. 150 CONTINUE
  294. END IF
  295. ELSE IF( NOTA )THEN
  296. IF( CONJB )THEN
  297. C
  298. C Form C := alpha*A*conjg( B' ) + beta*C.
  299. C
  300. DO 200, J = 1, N
  301. IF( BETA.EQ.ZERO )THEN
  302. DO 160, I = 1, M
  303. C( I, J ) = ZERO
  304. 160 CONTINUE
  305. ELSE IF( BETA.NE.ONE )THEN
  306. DO 170, I = 1, M
  307. C( I, J ) = BETA*C( I, J )
  308. 170 CONTINUE
  309. END IF
  310. DO 190, L = 1, K
  311. IF( B( J, L ).NE.ZERO )THEN
  312. TEMP = ALPHA*CONJG( B( J, L ) )
  313. DO 180, I = 1, M
  314. C( I, J ) = C( I, J ) + TEMP*A( I, L )
  315. 180 CONTINUE
  316. END IF
  317. 190 CONTINUE
  318. 200 CONTINUE
  319. ELSE
  320. C
  321. C Form C := alpha*A*B' + beta*C
  322. C
  323. DO 250, J = 1, N
  324. IF( BETA.EQ.ZERO )THEN
  325. DO 210, I = 1, M
  326. C( I, J ) = ZERO
  327. 210 CONTINUE
  328. ELSE IF( BETA.NE.ONE )THEN
  329. DO 220, I = 1, M
  330. C( I, J ) = BETA*C( I, J )
  331. 220 CONTINUE
  332. END IF
  333. DO 240, L = 1, K
  334. IF( B( J, L ).NE.ZERO )THEN
  335. TEMP = ALPHA*B( J, L )
  336. DO 230, I = 1, M
  337. C( I, J ) = C( I, J ) + TEMP*A( I, L )
  338. 230 CONTINUE
  339. END IF
  340. 240 CONTINUE
  341. 250 CONTINUE
  342. END IF
  343. ELSE IF( CONJA )THEN
  344. IF( CONJB )THEN
  345. C
  346. C Form C := alpha*conjg( A' )*conjg( B' ) + beta*C.
  347. C
  348. DO 280, J = 1, N
  349. DO 270, I = 1, M
  350. TEMP = ZERO
  351. DO 260, L = 1, K
  352. TEMP = TEMP + CONJG( A( L, I ) )*CONJG( B( J, L ) )
  353. 260 CONTINUE
  354. IF( BETA.EQ.ZERO )THEN
  355. C( I, J ) = ALPHA*TEMP
  356. ELSE
  357. C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
  358. END IF
  359. 270 CONTINUE
  360. 280 CONTINUE
  361. ELSE
  362. C
  363. C Form C := alpha*conjg( A' )*B' + beta*C
  364. C
  365. DO 310, J = 1, N
  366. DO 300, I = 1, M
  367. TEMP = ZERO
  368. DO 290, L = 1, K
  369. TEMP = TEMP + CONJG( A( L, I ) )*B( J, L )
  370. 290 CONTINUE
  371. IF( BETA.EQ.ZERO )THEN
  372. C( I, J ) = ALPHA*TEMP
  373. ELSE
  374. C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
  375. END IF
  376. 300 CONTINUE
  377. 310 CONTINUE
  378. END IF
  379. ELSE
  380. IF( CONJB )THEN
  381. C
  382. C Form C := alpha*A'*conjg( B' ) + beta*C
  383. C
  384. DO 340, J = 1, N
  385. DO 330, I = 1, M
  386. TEMP = ZERO
  387. DO 320, L = 1, K
  388. TEMP = TEMP + A( L, I )*CONJG( B( J, L ) )
  389. 320 CONTINUE
  390. IF( BETA.EQ.ZERO )THEN
  391. C( I, J ) = ALPHA*TEMP
  392. ELSE
  393. C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
  394. END IF
  395. 330 CONTINUE
  396. 340 CONTINUE
  397. ELSE
  398. C
  399. C Form C := alpha*A'*B' + beta*C
  400. C
  401. DO 370, J = 1, N
  402. DO 360, I = 1, M
  403. TEMP = ZERO
  404. DO 350, L = 1, K
  405. TEMP = TEMP + A( L, I )*B( J, L )
  406. 350 CONTINUE
  407. IF( BETA.EQ.ZERO )THEN
  408. C( I, J ) = ALPHA*TEMP
  409. ELSE
  410. C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
  411. END IF
  412. 360 CONTINUE
  413. 370 CONTINUE
  414. END IF
  415. END IF
  416. C
  417. RETURN
  418. C
  419. C End of CGEMM .
  420. C
  421. END