123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288 |
- *DECK CGEMV
- SUBROUTINE CGEMV (TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y,
- $ INCY)
- C***BEGIN PROLOGUE CGEMV
- C***PURPOSE Multiply a complex vector by a complex general matrix.
- C***LIBRARY SLATEC (BLAS)
- C***CATEGORY D1B4
- C***TYPE COMPLEX (SGEMV-S, DGEMV-D, CGEMV-C)
- C***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
- C***AUTHOR Dongarra, J. J., (ANL)
- C Du Croz, J., (NAG)
- C Hammarling, S., (NAG)
- C Hanson, R. J., (SNLA)
- C***DESCRIPTION
- C
- C CGEMV performs one of the matrix-vector operations
- C
- C y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, or
- C
- C y := alpha*conjg( A' )*x + beta*y,
- C
- C where alpha and beta are scalars, x and y are vectors and A is an
- C m by n matrix.
- C
- C Parameters
- C ==========
- C
- C TRANS - CHARACTER*1.
- C On entry, TRANS specifies the operation to be performed as
- C follows:
- C
- C TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
- C
- C TRANS = 'T' or 't' y := alpha*A'*x + beta*y.
- C
- C TRANS = 'C' or 'c' y := alpha*conjg( A' )*x + beta*y.
- C
- C Unchanged on exit.
- C
- C M - INTEGER.
- C On entry, M specifies the number of rows of the matrix A.
- C M must be at least zero.
- C Unchanged on exit.
- C
- C N - INTEGER.
- C On entry, N specifies the number of columns of the matrix A.
- C N must be at least zero.
- C Unchanged on exit.
- C
- C ALPHA - COMPLEX .
- C On entry, ALPHA specifies the scalar alpha.
- C Unchanged on exit.
- C
- C A - COMPLEX array of DIMENSION ( LDA, n ).
- C Before entry, the leading m by n part of the array A must
- C contain the matrix of coefficients.
- C Unchanged on exit.
- C
- C LDA - INTEGER.
- C On entry, LDA specifies the first dimension of A as declared
- C in the calling (sub) program. LDA must be at least
- C max( 1, m ).
- C Unchanged on exit.
- C
- C X - COMPLEX array of DIMENSION at least
- C ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
- C and at least
- C ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
- C Before entry, the incremented array X must contain the
- C vector x.
- C Unchanged on exit.
- C
- C INCX - INTEGER.
- C On entry, INCX specifies the increment for the elements of
- C X. INCX must not be zero.
- C Unchanged on exit.
- C
- C BETA - COMPLEX .
- C On entry, BETA specifies the scalar beta. When BETA is
- C supplied as zero then Y need not be set on input.
- C Unchanged on exit.
- C
- C Y - COMPLEX array of DIMENSION at least
- C ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
- C and at least
- C ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
- C Before entry with BETA non-zero, the incremented array Y
- C must contain the vector y. On exit, Y is overwritten by the
- C updated vector y.
- C
- C INCY - INTEGER.
- C On entry, INCY specifies the increment for the elements of
- C Y. INCY must not be zero.
- C Unchanged on exit.
- C
- C***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
- C Hanson, R. J. An extended set of Fortran basic linear
- C algebra subprograms. ACM TOMS, Vol. 14, No. 1,
- C pp. 1-17, March 1988.
- C***ROUTINES CALLED LSAME, XERBLA
- C***REVISION HISTORY (YYMMDD)
- C 861022 DATE WRITTEN
- C 910605 Modified to meet SLATEC prologue standards. Only comment
- C lines were modified. (BKS)
- C***END PROLOGUE CGEMV
- C .. Scalar Arguments ..
- COMPLEX ALPHA, BETA
- INTEGER INCX, INCY, LDA, M, N
- CHARACTER*1 TRANS
- C .. Array Arguments ..
- COMPLEX A( LDA, * ), X( * ), Y( * )
- C .. Parameters ..
- COMPLEX ONE
- PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
- COMPLEX ZERO
- PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
- C .. Local Scalars ..
- COMPLEX TEMP
- INTEGER I, INFO, IX, IY, J, JX, JY, KX, KY, LENX, LENY
- LOGICAL NOCONJ
- C .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- C .. External Subroutines ..
- EXTERNAL XERBLA
- C .. Intrinsic Functions ..
- INTRINSIC CONJG, MAX
- C***FIRST EXECUTABLE STATEMENT CGEMV
- C
- C Test the input parameters.
- C
- INFO = 0
- IF ( .NOT.LSAME( TRANS, 'N' ).AND.
- $ .NOT.LSAME( TRANS, 'T' ).AND.
- $ .NOT.LSAME( TRANS, 'C' ) )THEN
- INFO = 1
- ELSE IF( M.LT.0 )THEN
- INFO = 2
- ELSE IF( N.LT.0 )THEN
- INFO = 3
- ELSE IF( LDA.LT.MAX( 1, M ) )THEN
- INFO = 6
- ELSE IF( INCX.EQ.0 )THEN
- INFO = 8
- ELSE IF( INCY.EQ.0 )THEN
- INFO = 11
- END IF
- IF( INFO.NE.0 )THEN
- CALL XERBLA( 'CGEMV ', INFO )
- RETURN
- END IF
- C
- C Quick return if possible.
- C
- IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
- $ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
- $ RETURN
- C
- NOCONJ = LSAME( TRANS, 'T' )
- C
- C Set LENX and LENY, the lengths of the vectors x and y, and set
- C up the start points in X and Y.
- C
- IF( LSAME( TRANS, 'N' ) )THEN
- LENX = N
- LENY = M
- ELSE
- LENX = M
- LENY = N
- END IF
- IF( INCX.GT.0 )THEN
- KX = 1
- ELSE
- KX = 1 - ( LENX - 1 )*INCX
- END IF
- IF( INCY.GT.0 )THEN
- KY = 1
- ELSE
- KY = 1 - ( LENY - 1 )*INCY
- END IF
- C
- C Start the operations. In this version the elements of A are
- C accessed sequentially with one pass through A.
- C
- C First form y := beta*y.
- C
- IF( BETA.NE.ONE )THEN
- IF( INCY.EQ.1 )THEN
- IF( BETA.EQ.ZERO )THEN
- DO 10, I = 1, LENY
- Y( I ) = ZERO
- 10 CONTINUE
- ELSE
- DO 20, I = 1, LENY
- Y( I ) = BETA*Y( I )
- 20 CONTINUE
- END IF
- ELSE
- IY = KY
- IF( BETA.EQ.ZERO )THEN
- DO 30, I = 1, LENY
- Y( IY ) = ZERO
- IY = IY + INCY
- 30 CONTINUE
- ELSE
- DO 40, I = 1, LENY
- Y( IY ) = BETA*Y( IY )
- IY = IY + INCY
- 40 CONTINUE
- END IF
- END IF
- END IF
- IF( ALPHA.EQ.ZERO )
- $ RETURN
- IF( LSAME( TRANS, 'N' ) )THEN
- C
- C Form y := alpha*A*x + y.
- C
- JX = KX
- IF( INCY.EQ.1 )THEN
- DO 60, J = 1, N
- IF( X( JX ).NE.ZERO )THEN
- TEMP = ALPHA*X( JX )
- DO 50, I = 1, M
- Y( I ) = Y( I ) + TEMP*A( I, J )
- 50 CONTINUE
- END IF
- JX = JX + INCX
- 60 CONTINUE
- ELSE
- DO 80, J = 1, N
- IF( X( JX ).NE.ZERO )THEN
- TEMP = ALPHA*X( JX )
- IY = KY
- DO 70, I = 1, M
- Y( IY ) = Y( IY ) + TEMP*A( I, J )
- IY = IY + INCY
- 70 CONTINUE
- END IF
- JX = JX + INCX
- 80 CONTINUE
- END IF
- ELSE
- C
- C Form y := alpha*A'*x + y or y := alpha*conjg( A' )*x + y.
- C
- JY = KY
- IF( INCX.EQ.1 )THEN
- DO 110, J = 1, N
- TEMP = ZERO
- IF( NOCONJ )THEN
- DO 90, I = 1, M
- TEMP = TEMP + A( I, J )*X( I )
- 90 CONTINUE
- ELSE
- DO 100, I = 1, M
- TEMP = TEMP + CONJG( A( I, J ) )*X( I )
- 100 CONTINUE
- END IF
- Y( JY ) = Y( JY ) + ALPHA*TEMP
- JY = JY + INCY
- 110 CONTINUE
- ELSE
- DO 140, J = 1, N
- TEMP = ZERO
- IX = KX
- IF( NOCONJ )THEN
- DO 120, I = 1, M
- TEMP = TEMP + A( I, J )*X( IX )
- IX = IX + INCX
- 120 CONTINUE
- ELSE
- DO 130, I = 1, M
- TEMP = TEMP + CONJG( A( I, J ) )*X( IX )
- IX = IX + INCX
- 130 CONTINUE
- END IF
- Y( JY ) = Y( JY ) + ALPHA*TEMP
- JY = JY + INCY
- 140 CONTINUE
- END IF
- END IF
- C
- RETURN
- C
- C End of CGEMV .
- C
- END
|