chbmv.f 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317
  1. *DECK CHBMV
  2. SUBROUTINE CHBMV (UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y,
  3. $ INCY)
  4. C***BEGIN PROLOGUE CHBMV
  5. C***PURPOSE Multiply a complex vector by a complex Hermitian band
  6. C matrix.
  7. C***LIBRARY SLATEC (BLAS)
  8. C***CATEGORY D1B4
  9. C***TYPE COMPLEX (SHBMV-S, DHBMV-D, CHBMV-C)
  10. C***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
  11. C***AUTHOR Dongarra, J. J., (ANL)
  12. C Du Croz, J., (NAG)
  13. C Hammarling, S., (NAG)
  14. C Hanson, R. J., (SNLA)
  15. C***DESCRIPTION
  16. C
  17. C CHBMV performs the matrix-vector operation
  18. C
  19. C y := alpha*A*x + beta*y,
  20. C
  21. C where alpha and beta are scalars, x and y are n element vectors and
  22. C A is an n by n hermitian band matrix, with k super-diagonals.
  23. C
  24. C Parameters
  25. C ==========
  26. C
  27. C UPLO - CHARACTER*1.
  28. C On entry, UPLO specifies whether the upper or lower
  29. C triangular part of the band matrix A is being supplied as
  30. C follows:
  31. C
  32. C UPLO = 'U' or 'u' The upper triangular part of A is
  33. C being supplied.
  34. C
  35. C UPLO = 'L' or 'l' The lower triangular part of A is
  36. C being supplied.
  37. C
  38. C Unchanged on exit.
  39. C
  40. C N - INTEGER.
  41. C On entry, N specifies the order of the matrix A.
  42. C N must be at least zero.
  43. C Unchanged on exit.
  44. C
  45. C K - INTEGER.
  46. C On entry, K specifies the number of super-diagonals of the
  47. C matrix A. K must satisfy 0 .le. K.
  48. C Unchanged on exit.
  49. C
  50. C ALPHA - COMPLEX .
  51. C On entry, ALPHA specifies the scalar alpha.
  52. C Unchanged on exit.
  53. C
  54. C A - COMPLEX array of DIMENSION ( LDA, n ).
  55. C Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
  56. C by n part of the array A must contain the upper triangular
  57. C band part of the hermitian matrix, supplied column by
  58. C column, with the leading diagonal of the matrix in row
  59. C ( k + 1 ) of the array, the first super-diagonal starting at
  60. C position 2 in row k, and so on. The top left k by k triangle
  61. C of the array A is not referenced.
  62. C The following program segment will transfer the upper
  63. C triangular part of a hermitian band matrix from conventional
  64. C full matrix storage to band storage:
  65. C
  66. C DO 20, J = 1, N
  67. C M = K + 1 - J
  68. C DO 10, I = MAX( 1, J - K ), J
  69. C A( M + I, J ) = matrix( I, J )
  70. C 10 CONTINUE
  71. C 20 CONTINUE
  72. C
  73. C Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
  74. C by n part of the array A must contain the lower triangular
  75. C band part of the hermitian matrix, supplied column by
  76. C column, with the leading diagonal of the matrix in row 1 of
  77. C the array, the first sub-diagonal starting at position 1 in
  78. C row 2, and so on. The bottom right k by k triangle of the
  79. C array A is not referenced.
  80. C The following program segment will transfer the lower
  81. C triangular part of a hermitian band matrix from conventional
  82. C full matrix storage to band storage:
  83. C
  84. C DO 20, J = 1, N
  85. C M = 1 - J
  86. C DO 10, I = J, MIN( N, J + K )
  87. C A( M + I, J ) = matrix( I, J )
  88. C 10 CONTINUE
  89. C 20 CONTINUE
  90. C
  91. C Note that the imaginary parts of the diagonal elements need
  92. C not be set and are assumed to be zero.
  93. C Unchanged on exit.
  94. C
  95. C LDA - INTEGER.
  96. C On entry, LDA specifies the first dimension of A as declared
  97. C in the calling (sub) program. LDA must be at least
  98. C ( k + 1 ).
  99. C Unchanged on exit.
  100. C
  101. C X - COMPLEX array of DIMENSION at least
  102. C ( 1 + ( n - 1 )*abs( INCX ) ).
  103. C Before entry, the incremented array X must contain the
  104. C vector x.
  105. C Unchanged on exit.
  106. C
  107. C INCX - INTEGER.
  108. C On entry, INCX specifies the increment for the elements of
  109. C X. INCX must not be zero.
  110. C Unchanged on exit.
  111. C
  112. C BETA - COMPLEX .
  113. C On entry, BETA specifies the scalar beta.
  114. C Unchanged on exit.
  115. C
  116. C Y - COMPLEX array of DIMENSION at least
  117. C ( 1 + ( n - 1 )*abs( INCY ) ).
  118. C Before entry, the incremented array Y must contain the
  119. C vector y. On exit, Y is overwritten by the updated vector y.
  120. C
  121. C INCY - INTEGER.
  122. C On entry, INCY specifies the increment for the elements of
  123. C Y. INCY must not be zero.
  124. C Unchanged on exit.
  125. C
  126. C***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
  127. C Hanson, R. J. An extended set of Fortran basic linear
  128. C algebra subprograms. ACM TOMS, Vol. 14, No. 1,
  129. C pp. 1-17, March 1988.
  130. C***ROUTINES CALLED LSAME, XERBLA
  131. C***REVISION HISTORY (YYMMDD)
  132. C 861022 DATE WRITTEN
  133. C 910605 Modified to meet SLATEC prologue standards. Only comment
  134. C lines were modified. (BKS)
  135. C***END PROLOGUE CHBMV
  136. C .. Scalar Arguments ..
  137. COMPLEX ALPHA, BETA
  138. INTEGER INCX, INCY, K, LDA, N
  139. CHARACTER*1 UPLO
  140. C .. Array Arguments ..
  141. COMPLEX A( LDA, * ), X( * ), Y( * )
  142. C .. Parameters ..
  143. COMPLEX ONE
  144. PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
  145. COMPLEX ZERO
  146. PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
  147. C .. Local Scalars ..
  148. COMPLEX TEMP1, TEMP2
  149. INTEGER I, INFO, IX, IY, J, JX, JY, KPLUS1, KX, KY, L
  150. C .. External Functions ..
  151. LOGICAL LSAME
  152. EXTERNAL LSAME
  153. C .. External Subroutines ..
  154. EXTERNAL XERBLA
  155. C .. Intrinsic Functions ..
  156. INTRINSIC CONJG, MAX, MIN, REAL
  157. C***FIRST EXECUTABLE STATEMENT CHBMV
  158. C
  159. C Test the input parameters.
  160. C
  161. INFO = 0
  162. IF ( .NOT.LSAME( UPLO, 'U' ).AND.
  163. $ .NOT.LSAME( UPLO, 'L' ) )THEN
  164. INFO = 1
  165. ELSE IF( N.LT.0 )THEN
  166. INFO = 2
  167. ELSE IF( K.LT.0 )THEN
  168. INFO = 3
  169. ELSE IF( LDA.LT.( K + 1 ) )THEN
  170. INFO = 6
  171. ELSE IF( INCX.EQ.0 )THEN
  172. INFO = 8
  173. ELSE IF( INCY.EQ.0 )THEN
  174. INFO = 11
  175. END IF
  176. IF( INFO.NE.0 )THEN
  177. CALL XERBLA( 'CHBMV ', INFO )
  178. RETURN
  179. END IF
  180. C
  181. C Quick return if possible.
  182. C
  183. IF( ( N.EQ.0 ).OR.( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
  184. $ RETURN
  185. C
  186. C Set up the start points in X and Y.
  187. C
  188. IF( INCX.GT.0 )THEN
  189. KX = 1
  190. ELSE
  191. KX = 1 - ( N - 1 )*INCX
  192. END IF
  193. IF( INCY.GT.0 )THEN
  194. KY = 1
  195. ELSE
  196. KY = 1 - ( N - 1 )*INCY
  197. END IF
  198. C
  199. C Start the operations. In this version the elements of the array A
  200. C are accessed sequentially with one pass through A.
  201. C
  202. C First form y := beta*y.
  203. C
  204. IF( BETA.NE.ONE )THEN
  205. IF( INCY.EQ.1 )THEN
  206. IF( BETA.EQ.ZERO )THEN
  207. DO 10, I = 1, N
  208. Y( I ) = ZERO
  209. 10 CONTINUE
  210. ELSE
  211. DO 20, I = 1, N
  212. Y( I ) = BETA*Y( I )
  213. 20 CONTINUE
  214. END IF
  215. ELSE
  216. IY = KY
  217. IF( BETA.EQ.ZERO )THEN
  218. DO 30, I = 1, N
  219. Y( IY ) = ZERO
  220. IY = IY + INCY
  221. 30 CONTINUE
  222. ELSE
  223. DO 40, I = 1, N
  224. Y( IY ) = BETA*Y( IY )
  225. IY = IY + INCY
  226. 40 CONTINUE
  227. END IF
  228. END IF
  229. END IF
  230. IF( ALPHA.EQ.ZERO )
  231. $ RETURN
  232. IF( LSAME( UPLO, 'U' ) )THEN
  233. C
  234. C Form y when upper triangle of A is stored.
  235. C
  236. KPLUS1 = K + 1
  237. IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
  238. DO 60, J = 1, N
  239. TEMP1 = ALPHA*X( J )
  240. TEMP2 = ZERO
  241. L = KPLUS1 - J
  242. DO 50, I = MAX( 1, J - K ), J - 1
  243. Y( I ) = Y( I ) + TEMP1*A( L + I, J )
  244. TEMP2 = TEMP2 + CONJG( A( L + I, J ) )*X( I )
  245. 50 CONTINUE
  246. Y( J ) = Y( J ) + TEMP1*REAL( A( KPLUS1, J ) )
  247. $ + ALPHA*TEMP2
  248. 60 CONTINUE
  249. ELSE
  250. JX = KX
  251. JY = KY
  252. DO 80, J = 1, N
  253. TEMP1 = ALPHA*X( JX )
  254. TEMP2 = ZERO
  255. IX = KX
  256. IY = KY
  257. L = KPLUS1 - J
  258. DO 70, I = MAX( 1, J - K ), J - 1
  259. Y( IY ) = Y( IY ) + TEMP1*A( L + I, J )
  260. TEMP2 = TEMP2 + CONJG( A( L + I, J ) )*X( IX )
  261. IX = IX + INCX
  262. IY = IY + INCY
  263. 70 CONTINUE
  264. Y( JY ) = Y( JY ) + TEMP1*REAL( A( KPLUS1, J ) )
  265. $ + ALPHA*TEMP2
  266. JX = JX + INCX
  267. JY = JY + INCY
  268. IF( J.GT.K )THEN
  269. KX = KX + INCX
  270. KY = KY + INCY
  271. END IF
  272. 80 CONTINUE
  273. END IF
  274. ELSE
  275. C
  276. C Form y when lower triangle of A is stored.
  277. C
  278. IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
  279. DO 100, J = 1, N
  280. TEMP1 = ALPHA*X( J )
  281. TEMP2 = ZERO
  282. Y( J ) = Y( J ) + TEMP1*REAL( A( 1, J ) )
  283. L = 1 - J
  284. DO 90, I = J + 1, MIN( N, J + K )
  285. Y( I ) = Y( I ) + TEMP1*A( L + I, J )
  286. TEMP2 = TEMP2 + CONJG( A( L + I, J ) )*X( I )
  287. 90 CONTINUE
  288. Y( J ) = Y( J ) + ALPHA*TEMP2
  289. 100 CONTINUE
  290. ELSE
  291. JX = KX
  292. JY = KY
  293. DO 120, J = 1, N
  294. TEMP1 = ALPHA*X( JX )
  295. TEMP2 = ZERO
  296. Y( JY ) = Y( JY ) + TEMP1*REAL( A( 1, J ) )
  297. L = 1 - J
  298. IX = JX
  299. IY = JY
  300. DO 110, I = J + 1, MIN( N, J + K )
  301. IX = IX + INCX
  302. IY = IY + INCY
  303. Y( IY ) = Y( IY ) + TEMP1*A( L + I, J )
  304. TEMP2 = TEMP2 + CONJG( A( L + I, J ) )*X( IX )
  305. 110 CONTINUE
  306. Y( JY ) = Y( JY ) + ALPHA*TEMP2
  307. JX = JX + INCX
  308. JY = JY + INCY
  309. 120 CONTINUE
  310. END IF
  311. END IF
  312. C
  313. RETURN
  314. C
  315. C End of CHBMV .
  316. C
  317. END