chemv.f 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272
  1. *DECK CHEMV
  2. SUBROUTINE CHEMV (UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
  3. C***BEGIN PROLOGUE CHEMV
  4. C***PURPOSE Multiply a complex vector by a complex Hermitian matrix.
  5. C***LIBRARY SLATEC (BLAS)
  6. C***CATEGORY D1B4
  7. C***TYPE COMPLEX (SHEMV-S, DHEMV-D, CHEMV-C)
  8. C***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
  9. C***AUTHOR Dongarra, J. J., (ANL)
  10. C Du Croz, J., (NAG)
  11. C Hammarling, S., (NAG)
  12. C Hanson, R. J., (SNLA)
  13. C***DESCRIPTION
  14. C
  15. C CHEMV performs the matrix-vector operation
  16. C
  17. C y := alpha*A*x + beta*y,
  18. C
  19. C where alpha and beta are scalars, x and y are n element vectors and
  20. C A is an n by n hermitian matrix.
  21. C
  22. C Parameters
  23. C ==========
  24. C
  25. C UPLO - CHARACTER*1.
  26. C On entry, UPLO specifies whether the upper or lower
  27. C triangular part of the array A is to be referenced as
  28. C follows:
  29. C
  30. C UPLO = 'U' or 'u' Only the upper triangular part of A
  31. C is to be referenced.
  32. C
  33. C UPLO = 'L' or 'l' Only the lower triangular part of A
  34. C is to be referenced.
  35. C
  36. C Unchanged on exit.
  37. C
  38. C N - INTEGER.
  39. C On entry, N specifies the order of the matrix A.
  40. C N must be at least zero.
  41. C Unchanged on exit.
  42. C
  43. C ALPHA - COMPLEX .
  44. C On entry, ALPHA specifies the scalar alpha.
  45. C Unchanged on exit.
  46. C
  47. C A - COMPLEX array of DIMENSION ( LDA, n ).
  48. C Before entry with UPLO = 'U' or 'u', the leading n by n
  49. C upper triangular part of the array A must contain the upper
  50. C triangular part of the hermitian matrix and the strictly
  51. C lower triangular part of A is not referenced.
  52. C Before entry with UPLO = 'L' or 'l', the leading n by n
  53. C lower triangular part of the array A must contain the lower
  54. C triangular part of the hermitian matrix and the strictly
  55. C upper triangular part of A is not referenced.
  56. C Note that the imaginary parts of the diagonal elements need
  57. C not be set and are assumed to be zero.
  58. C Unchanged on exit.
  59. C
  60. C LDA - INTEGER.
  61. C On entry, LDA specifies the first dimension of A as declared
  62. C in the calling (sub) program. LDA must be at least
  63. C max( 1, n ).
  64. C Unchanged on exit.
  65. C
  66. C X - COMPLEX array of dimension at least
  67. C ( 1 + ( n - 1 )*abs( INCX ) ).
  68. C Before entry, the incremented array X must contain the n
  69. C element vector x.
  70. C Unchanged on exit.
  71. C
  72. C INCX - INTEGER.
  73. C On entry, INCX specifies the increment for the elements of
  74. C X. INCX must not be zero.
  75. C Unchanged on exit.
  76. C
  77. C BETA - COMPLEX .
  78. C On entry, BETA specifies the scalar beta. When BETA is
  79. C supplied as zero then Y need not be set on input.
  80. C Unchanged on exit.
  81. C
  82. C Y - COMPLEX array of dimension at least
  83. C ( 1 + ( n - 1 )*abs( INCY ) ).
  84. C Before entry, the incremented array Y must contain the n
  85. C element vector y. On exit, Y is overwritten by the updated
  86. C vector y.
  87. C
  88. C INCY - INTEGER.
  89. C On entry, INCY specifies the increment for the elements of
  90. C Y. INCY must not be zero.
  91. C Unchanged on exit.
  92. C
  93. C***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
  94. C Hanson, R. J. An extended set of Fortran basic linear
  95. C algebra subprograms. ACM TOMS, Vol. 14, No. 1,
  96. C pp. 1-17, March 1988.
  97. C***ROUTINES CALLED LSAME, XERBLA
  98. C***REVISION HISTORY (YYMMDD)
  99. C 861022 DATE WRITTEN
  100. C 910605 Modified to meet SLATEC prologue standards. Only comment
  101. C lines were modified. (BKS)
  102. C***END PROLOGUE CHEMV
  103. C .. Scalar Arguments ..
  104. COMPLEX ALPHA, BETA
  105. INTEGER INCX, INCY, LDA, N
  106. CHARACTER*1 UPLO
  107. C .. Array Arguments ..
  108. COMPLEX A( LDA, * ), X( * ), Y( * )
  109. C .. Parameters ..
  110. COMPLEX ONE
  111. PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
  112. COMPLEX ZERO
  113. PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
  114. C .. Local Scalars ..
  115. COMPLEX TEMP1, TEMP2
  116. INTEGER I, INFO, IX, IY, J, JX, JY, KX, KY
  117. C .. External Functions ..
  118. LOGICAL LSAME
  119. EXTERNAL LSAME
  120. C .. External Subroutines ..
  121. EXTERNAL XERBLA
  122. C .. Intrinsic Functions ..
  123. INTRINSIC CONJG, MAX, REAL
  124. C***FIRST EXECUTABLE STATEMENT CHEMV
  125. C
  126. C Test the input parameters.
  127. C
  128. INFO = 0
  129. IF ( .NOT.LSAME( UPLO, 'U' ).AND.
  130. $ .NOT.LSAME( UPLO, 'L' ) )THEN
  131. INFO = 1
  132. ELSE IF( N.LT.0 )THEN
  133. INFO = 2
  134. ELSE IF( LDA.LT.MAX( 1, N ) )THEN
  135. INFO = 5
  136. ELSE IF( INCX.EQ.0 )THEN
  137. INFO = 7
  138. ELSE IF( INCY.EQ.0 )THEN
  139. INFO = 10
  140. END IF
  141. IF( INFO.NE.0 )THEN
  142. CALL XERBLA( 'CHEMV ', INFO )
  143. RETURN
  144. END IF
  145. C
  146. C Quick return if possible.
  147. C
  148. IF( ( N.EQ.0 ).OR.( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
  149. $ RETURN
  150. C
  151. C Set up the start points in X and Y.
  152. C
  153. IF( INCX.GT.0 )THEN
  154. KX = 1
  155. ELSE
  156. KX = 1 - ( N - 1 )*INCX
  157. END IF
  158. IF( INCY.GT.0 )THEN
  159. KY = 1
  160. ELSE
  161. KY = 1 - ( N - 1 )*INCY
  162. END IF
  163. C
  164. C Start the operations. In this version the elements of A are
  165. C accessed sequentially with one pass through the triangular part
  166. C of A.
  167. C
  168. C First form y := beta*y.
  169. C
  170. IF( BETA.NE.ONE )THEN
  171. IF( INCY.EQ.1 )THEN
  172. IF( BETA.EQ.ZERO )THEN
  173. DO 10, I = 1, N
  174. Y( I ) = ZERO
  175. 10 CONTINUE
  176. ELSE
  177. DO 20, I = 1, N
  178. Y( I ) = BETA*Y( I )
  179. 20 CONTINUE
  180. END IF
  181. ELSE
  182. IY = KY
  183. IF( BETA.EQ.ZERO )THEN
  184. DO 30, I = 1, N
  185. Y( IY ) = ZERO
  186. IY = IY + INCY
  187. 30 CONTINUE
  188. ELSE
  189. DO 40, I = 1, N
  190. Y( IY ) = BETA*Y( IY )
  191. IY = IY + INCY
  192. 40 CONTINUE
  193. END IF
  194. END IF
  195. END IF
  196. IF( ALPHA.EQ.ZERO )
  197. $ RETURN
  198. IF( LSAME( UPLO, 'U' ) )THEN
  199. C
  200. C Form y when A is stored in upper triangle.
  201. C
  202. IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
  203. DO 60, J = 1, N
  204. TEMP1 = ALPHA*X( J )
  205. TEMP2 = ZERO
  206. DO 50, I = 1, J - 1
  207. Y( I ) = Y( I ) + TEMP1*A( I, J )
  208. TEMP2 = TEMP2 + CONJG( A( I, J ) )*X( I )
  209. 50 CONTINUE
  210. Y( J ) = Y( J ) + TEMP1*REAL( A( J, J ) ) + ALPHA*TEMP2
  211. 60 CONTINUE
  212. ELSE
  213. JX = KX
  214. JY = KY
  215. DO 80, J = 1, N
  216. TEMP1 = ALPHA*X( JX )
  217. TEMP2 = ZERO
  218. IX = KX
  219. IY = KY
  220. DO 70, I = 1, J - 1
  221. Y( IY ) = Y( IY ) + TEMP1*A( I, J )
  222. TEMP2 = TEMP2 + CONJG( A( I, J ) )*X( IX )
  223. IX = IX + INCX
  224. IY = IY + INCY
  225. 70 CONTINUE
  226. Y( JY ) = Y( JY ) + TEMP1*REAL( A( J, J ) ) + ALPHA*TEMP2
  227. JX = JX + INCX
  228. JY = JY + INCY
  229. 80 CONTINUE
  230. END IF
  231. ELSE
  232. C
  233. C Form y when A is stored in lower triangle.
  234. C
  235. IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
  236. DO 100, J = 1, N
  237. TEMP1 = ALPHA*X( J )
  238. TEMP2 = ZERO
  239. Y( J ) = Y( J ) + TEMP1*REAL( A( J, J ) )
  240. DO 90, I = J + 1, N
  241. Y( I ) = Y( I ) + TEMP1*A( I, J )
  242. TEMP2 = TEMP2 + CONJG( A( I, J ) )*X( I )
  243. 90 CONTINUE
  244. Y( J ) = Y( J ) + ALPHA*TEMP2
  245. 100 CONTINUE
  246. ELSE
  247. JX = KX
  248. JY = KY
  249. DO 120, J = 1, N
  250. TEMP1 = ALPHA*X( JX )
  251. TEMP2 = ZERO
  252. Y( JY ) = Y( JY ) + TEMP1*REAL( A( J, J ) )
  253. IX = JX
  254. IY = JY
  255. DO 110, I = J + 1, N
  256. IX = IX + INCX
  257. IY = IY + INCY
  258. Y( IY ) = Y( IY ) + TEMP1*A( I, J )
  259. TEMP2 = TEMP2 + CONJG( A( I, J ) )*X( IX )
  260. 110 CONTINUE
  261. Y( JY ) = Y( JY ) + ALPHA*TEMP2
  262. JX = JX + INCX
  263. JY = JY + INCY
  264. 120 CONTINUE
  265. END IF
  266. END IF
  267. C
  268. RETURN
  269. C
  270. C End of CHEMV .
  271. C
  272. END