cherk.f 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327
  1. *DECK CHERK
  2. SUBROUTINE CHERK (UPLO, TRANS, N, K, ALPHA, A, LDA, BETA, C, LDC)
  3. C***BEGIN PROLOGUE CHERK
  4. C***PURPOSE Perform Hermitian rank k update of a complex Hermitian
  5. C matrix.
  6. C***LIBRARY SLATEC (BLAS)
  7. C***CATEGORY D1B6
  8. C***TYPE COMPLEX (SHERK-S, DHERK-D, CHERK-C)
  9. C***KEYWORDS LEVEL 3 BLAS, LINEAR ALGEBRA
  10. C***AUTHOR Dongarra, J., (ANL)
  11. C Duff, I., (AERE)
  12. C Du Croz, J., (NAG)
  13. C Hammarling, S. (NAG)
  14. C***DESCRIPTION
  15. C
  16. C CHERK performs one of the hermitian rank k operations
  17. C
  18. C C := alpha*A*conjg( A' ) + beta*C,
  19. C
  20. C or
  21. C
  22. C C := alpha*conjg( A' )*A + beta*C,
  23. C
  24. C where alpha and beta are real scalars, C is an n by n hermitian
  25. C matrix and A is an n by k matrix in the first case and a k by n
  26. C matrix in the second case.
  27. C
  28. C Parameters
  29. C ==========
  30. C
  31. C UPLO - CHARACTER*1.
  32. C On entry, UPLO specifies whether the upper or lower
  33. C triangular part of the array C is to be referenced as
  34. C follows:
  35. C
  36. C UPLO = 'U' or 'u' Only the upper triangular part of C
  37. C is to be referenced.
  38. C
  39. C UPLO = 'L' or 'l' Only the lower triangular part of C
  40. C is to be referenced.
  41. C
  42. C Unchanged on exit.
  43. C
  44. C TRANS - CHARACTER*1.
  45. C On entry, TRANS specifies the operation to be performed as
  46. C follows:
  47. C
  48. C TRANS = 'N' or 'n' C := alpha*A*conjg( A' ) + beta*C.
  49. C
  50. C TRANS = 'C' or 'c' C := alpha*conjg( A' )*A + beta*C.
  51. C
  52. C Unchanged on exit.
  53. C
  54. C N - INTEGER.
  55. C On entry, N specifies the order of the matrix C. N must be
  56. C at least zero.
  57. C Unchanged on exit.
  58. C
  59. C K - INTEGER.
  60. C On entry with TRANS = 'N' or 'n', K specifies the number
  61. C of columns of the matrix A, and on entry with
  62. C TRANS = 'C' or 'c', K specifies the number of rows of the
  63. C matrix A. K must be at least zero.
  64. C Unchanged on exit.
  65. C
  66. C ALPHA - REAL .
  67. C On entry, ALPHA specifies the scalar alpha.
  68. C Unchanged on exit.
  69. C
  70. C A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is
  71. C k when TRANS = 'N' or 'n', and is n otherwise.
  72. C Before entry with TRANS = 'N' or 'n', the leading n by k
  73. C part of the array A must contain the matrix A, otherwise
  74. C the leading k by n part of the array A must contain the
  75. C matrix A.
  76. C Unchanged on exit.
  77. C
  78. C LDA - INTEGER.
  79. C On entry, LDA specifies the first dimension of A as declared
  80. C in the calling (sub) program. When TRANS = 'N' or 'n'
  81. C then LDA must be at least max( 1, n ), otherwise LDA must
  82. C be at least max( 1, k ).
  83. C Unchanged on exit.
  84. C
  85. C BETA - REAL .
  86. C On entry, BETA specifies the scalar beta.
  87. C Unchanged on exit.
  88. C
  89. C C - COMPLEX array of DIMENSION ( LDC, n ).
  90. C Before entry with UPLO = 'U' or 'u', the leading n by n
  91. C upper triangular part of the array C must contain the upper
  92. C triangular part of the hermitian matrix and the strictly
  93. C lower triangular part of C is not referenced. On exit, the
  94. C upper triangular part of the array C is overwritten by the
  95. C upper triangular part of the updated matrix.
  96. C Before entry with UPLO = 'L' or 'l', the leading n by n
  97. C lower triangular part of the array C must contain the lower
  98. C triangular part of the hermitian matrix and the strictly
  99. C upper triangular part of C is not referenced. On exit, the
  100. C lower triangular part of the array C is overwritten by the
  101. C lower triangular part of the updated matrix.
  102. C Note that the imaginary parts of the diagonal elements need
  103. C not be set, they are assumed to be zero, and on exit they
  104. C are set to zero.
  105. C
  106. C LDC - INTEGER.
  107. C On entry, LDC specifies the first dimension of C as declared
  108. C in the calling (sub) program. LDC must be at least
  109. C max( 1, n ).
  110. C Unchanged on exit.
  111. C
  112. C***REFERENCES Dongarra, J., Du Croz, J., Duff, I., and Hammarling, S.
  113. C A set of level 3 basic linear algebra subprograms.
  114. C ACM TOMS, Vol. 16, No. 1, pp. 1-17, March 1990.
  115. C***ROUTINES CALLED LSAME, XERBLA
  116. C***REVISION HISTORY (YYMMDD)
  117. C 890208 DATE WRITTEN
  118. C 910605 Modified to meet SLATEC prologue standards. Only comment
  119. C lines were modified. (BKS)
  120. C***END PROLOGUE CHERK
  121. C .. Scalar Arguments ..
  122. CHARACTER*1 UPLO, TRANS
  123. INTEGER N, K, LDA, LDC
  124. REAL ALPHA, BETA
  125. C .. Array Arguments ..
  126. COMPLEX A( LDA, * ), C( LDC, * )
  127. C .. External Functions ..
  128. LOGICAL LSAME
  129. EXTERNAL LSAME
  130. C .. External Subroutines ..
  131. EXTERNAL XERBLA
  132. C .. Intrinsic Functions ..
  133. INTRINSIC CMPLX, CONJG, MAX, REAL
  134. C .. Local Scalars ..
  135. LOGICAL UPPER
  136. INTEGER I, INFO, J, L, NROWA
  137. REAL RTEMP
  138. COMPLEX TEMP
  139. C .. Parameters ..
  140. REAL ONE , ZERO
  141. PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
  142. C***FIRST EXECUTABLE STATEMENT CHERK
  143. C
  144. C Test the input parameters.
  145. C
  146. IF( LSAME( TRANS, 'N' ) )THEN
  147. NROWA = N
  148. ELSE
  149. NROWA = K
  150. END IF
  151. UPPER = LSAME( UPLO, 'U' )
  152. C
  153. INFO = 0
  154. IF( ( .NOT.UPPER ).AND.
  155. $ ( .NOT.LSAME( UPLO , 'L' ) ) )THEN
  156. INFO = 1
  157. ELSE IF( ( .NOT.LSAME( TRANS, 'N' ) ).AND.
  158. $ ( .NOT.LSAME( TRANS, 'C' ) ) )THEN
  159. INFO = 2
  160. ELSE IF( N .LT.0 )THEN
  161. INFO = 3
  162. ELSE IF( K .LT.0 )THEN
  163. INFO = 4
  164. ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
  165. INFO = 7
  166. ELSE IF( LDC.LT.MAX( 1, N ) )THEN
  167. INFO = 10
  168. END IF
  169. IF( INFO.NE.0 )THEN
  170. CALL XERBLA( 'CHERK ', INFO )
  171. RETURN
  172. END IF
  173. C
  174. C Quick return if possible.
  175. C
  176. IF( ( N.EQ.0 ).OR.
  177. $ ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) )
  178. $ RETURN
  179. C
  180. C And when alpha.eq.zero.
  181. C
  182. IF( ALPHA.EQ.ZERO )THEN
  183. IF( UPPER )THEN
  184. IF( BETA.EQ.ZERO )THEN
  185. DO 20, J = 1, N
  186. DO 10, I = 1, J
  187. C( I, J ) = ZERO
  188. 10 CONTINUE
  189. 20 CONTINUE
  190. ELSE
  191. DO 40, J = 1, N
  192. DO 30, I = 1, J - 1
  193. C( I, J ) = BETA*C( I, J )
  194. 30 CONTINUE
  195. C( J, J ) = BETA*REAL( C( J, J ) )
  196. 40 CONTINUE
  197. END IF
  198. ELSE
  199. IF( BETA.EQ.ZERO )THEN
  200. DO 60, J = 1, N
  201. DO 50, I = J, N
  202. C( I, J ) = ZERO
  203. 50 CONTINUE
  204. 60 CONTINUE
  205. ELSE
  206. DO 80, J = 1, N
  207. C( J, J ) = BETA*REAL( C( J, J ) )
  208. DO 70, I = J + 1, N
  209. C( I, J ) = BETA*C( I, J )
  210. 70 CONTINUE
  211. 80 CONTINUE
  212. END IF
  213. END IF
  214. RETURN
  215. END IF
  216. C
  217. C Start the operations.
  218. C
  219. IF( LSAME( TRANS, 'N' ) )THEN
  220. C
  221. C Form C := alpha*A*conjg( A' ) + beta*C.
  222. C
  223. IF( UPPER )THEN
  224. DO 130, J = 1, N
  225. IF( BETA.EQ.ZERO )THEN
  226. DO 90, I = 1, J
  227. C( I, J ) = ZERO
  228. 90 CONTINUE
  229. ELSE IF( BETA.NE.ONE )THEN
  230. DO 100, I = 1, J - 1
  231. C( I, J ) = BETA*C( I, J )
  232. 100 CONTINUE
  233. C( J, J ) = BETA*REAL( C( J, J ) )
  234. END IF
  235. DO 120, L = 1, K
  236. IF( A( J, L ).NE.CMPLX( ZERO ) )THEN
  237. TEMP = ALPHA*CONJG( A( J, L ) )
  238. DO 110, I = 1, J - 1
  239. C( I, J ) = C( I, J ) + TEMP*A( I, L )
  240. 110 CONTINUE
  241. C( J, J ) = REAL( C( J, J ) ) +
  242. $ REAL( TEMP*A( I, L ) )
  243. END IF
  244. 120 CONTINUE
  245. 130 CONTINUE
  246. ELSE
  247. DO 180, J = 1, N
  248. IF( BETA.EQ.ZERO )THEN
  249. DO 140, I = J, N
  250. C( I, J ) = ZERO
  251. 140 CONTINUE
  252. ELSE IF( BETA.NE.ONE )THEN
  253. C( J, J ) = BETA*REAL( C( J, J ) )
  254. DO 150, I = J + 1, N
  255. C( I, J ) = BETA*C( I, J )
  256. 150 CONTINUE
  257. END IF
  258. DO 170, L = 1, K
  259. IF( A( J, L ).NE.CMPLX( ZERO ) )THEN
  260. TEMP = ALPHA*CONJG( A( J, L ) )
  261. C( J, J ) = REAL( C( J, J ) ) +
  262. $ REAL( TEMP*A( J, L ) )
  263. DO 160, I = J + 1, N
  264. C( I, J ) = C( I, J ) + TEMP*A( I, L )
  265. 160 CONTINUE
  266. END IF
  267. 170 CONTINUE
  268. 180 CONTINUE
  269. END IF
  270. ELSE
  271. C
  272. C Form C := alpha*conjg( A' )*A + beta*C.
  273. C
  274. IF( UPPER )THEN
  275. DO 220, J = 1, N
  276. DO 200, I = 1, J - 1
  277. TEMP = ZERO
  278. DO 190, L = 1, K
  279. TEMP = TEMP + CONJG( A( L, I ) )*A( L, J )
  280. 190 CONTINUE
  281. IF( BETA.EQ.ZERO )THEN
  282. C( I, J ) = ALPHA*TEMP
  283. ELSE
  284. C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
  285. END IF
  286. 200 CONTINUE
  287. RTEMP = ZERO
  288. DO 210, L = 1, K
  289. RTEMP = RTEMP + CONJG( A( L, J ) )*A( L, J )
  290. 210 CONTINUE
  291. IF( BETA.EQ.ZERO )THEN
  292. C( J, J ) = ALPHA*RTEMP
  293. ELSE
  294. C( J, J ) = ALPHA*RTEMP + BETA*REAL( C( J, J ) )
  295. END IF
  296. 220 CONTINUE
  297. ELSE
  298. DO 260, J = 1, N
  299. RTEMP = ZERO
  300. DO 230, L = 1, K
  301. RTEMP = RTEMP + CONJG( A( L, J ) )*A( L, J )
  302. 230 CONTINUE
  303. IF( BETA.EQ.ZERO )THEN
  304. C( J, J ) = ALPHA*RTEMP
  305. ELSE
  306. C( J, J ) = ALPHA*RTEMP + BETA*REAL( C( J, J ) )
  307. END IF
  308. DO 250, I = J + 1, N
  309. TEMP = ZERO
  310. DO 240, L = 1, K
  311. TEMP = TEMP + CONJG( A( L, I ) )*A( L, J )
  312. 240 CONTINUE
  313. IF( BETA.EQ.ZERO )THEN
  314. C( I, J ) = ALPHA*TEMP
  315. ELSE
  316. C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
  317. END IF
  318. 250 CONTINUE
  319. 260 CONTINUE
  320. END IF
  321. END IF
  322. C
  323. RETURN
  324. C
  325. C End of CHERK .
  326. C
  327. END