chpmv.f 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277
  1. *DECK CHPMV
  2. SUBROUTINE CHPMV (UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY)
  3. C***BEGIN PROLOGUE CHPMV
  4. C***PURPOSE Perform the matrix-vector operation.
  5. C***LIBRARY SLATEC (BLAS)
  6. C***CATEGORY D1B4
  7. C***TYPE COMPLEX (SHPMV-S, DHPMV-D, CHPMV-C)
  8. C***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
  9. C***AUTHOR Dongarra, J. J., (ANL)
  10. C Du Croz, J., (NAG)
  11. C Hammarling, S., (NAG)
  12. C Hanson, R. J., (SNLA)
  13. C***DESCRIPTION
  14. C
  15. C CHPMV performs the matrix-vector operation
  16. C
  17. C y := alpha*A*x + beta*y,
  18. C
  19. C where alpha and beta are scalars, x and y are n element vectors and
  20. C A is an n by n hermitian matrix, supplied in packed form.
  21. C
  22. C Parameters
  23. C ==========
  24. C
  25. C UPLO - CHARACTER*1.
  26. C On entry, UPLO specifies whether the upper or lower
  27. C triangular part of the matrix A is supplied in the packed
  28. C array AP as follows:
  29. C
  30. C UPLO = 'U' or 'u' The upper triangular part of A is
  31. C supplied in AP.
  32. C
  33. C UPLO = 'L' or 'l' The lower triangular part of A is
  34. C supplied in AP.
  35. C
  36. C Unchanged on exit.
  37. C
  38. C N - INTEGER.
  39. C On entry, N specifies the order of the matrix A.
  40. C N must be at least zero.
  41. C Unchanged on exit.
  42. C
  43. C ALPHA - COMPLEX .
  44. C On entry, ALPHA specifies the scalar alpha.
  45. C Unchanged on exit.
  46. C
  47. C AP - COMPLEX array of DIMENSION at least
  48. C ( ( n*( n + 1))/2).
  49. C Before entry with UPLO = 'U' or 'u', the array AP must
  50. C contain the upper triangular part of the hermitian matrix
  51. C packed sequentially, column by column, so that AP( 1 )
  52. C contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
  53. C and a( 2, 2 ) respectively, and so on.
  54. C Before entry with UPLO = 'L' or 'l', the array AP must
  55. C contain the lower triangular part of the hermitian matrix
  56. C packed sequentially, column by column, so that AP( 1 )
  57. C contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
  58. C and a( 3, 1 ) respectively, and so on.
  59. C Note that the imaginary parts of the diagonal elements need
  60. C not be set and are assumed to be zero.
  61. C Unchanged on exit.
  62. C
  63. C X - COMPLEX array of dimension at least
  64. C ( 1 + ( n - 1 )*abs( INCX ) ).
  65. C Before entry, the incremented array X must contain the n
  66. C element vector x.
  67. C Unchanged on exit.
  68. C
  69. C INCX - INTEGER.
  70. C On entry, INCX specifies the increment for the elements of
  71. C X. INCX must not be zero.
  72. C Unchanged on exit.
  73. C
  74. C BETA - COMPLEX .
  75. C On entry, BETA specifies the scalar beta. When BETA is
  76. C supplied as zero then Y need not be set on input.
  77. C Unchanged on exit.
  78. C
  79. C Y - COMPLEX array of dimension at least
  80. C ( 1 + ( n - 1 )*abs( INCY ) ).
  81. C Before entry, the incremented array Y must contain the n
  82. C element vector y. On exit, Y is overwritten by the updated
  83. C vector y.
  84. C
  85. C INCY - INTEGER.
  86. C On entry, INCY specifies the increment for the elements of
  87. C Y. INCY must not be zero.
  88. C Unchanged on exit.
  89. C
  90. C***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
  91. C Hanson, R. J. An extended set of Fortran basic linear
  92. C algebra subprograms. ACM TOMS, Vol. 14, No. 1,
  93. C pp. 1-17, March 1988.
  94. C***ROUTINES CALLED LSAME, XERBLA
  95. C***REVISION HISTORY (YYMMDD)
  96. C 861022 DATE WRITTEN
  97. C 910605 Modified to meet SLATEC prologue standards. Only comment
  98. C lines were modified. (BKS)
  99. C***END PROLOGUE CHPMV
  100. C .. Scalar Arguments ..
  101. COMPLEX ALPHA, BETA
  102. INTEGER INCX, INCY, N
  103. CHARACTER*1 UPLO
  104. C .. Array Arguments ..
  105. COMPLEX AP( * ), X( * ), Y( * )
  106. C .. Parameters ..
  107. COMPLEX ONE
  108. PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
  109. COMPLEX ZERO
  110. PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
  111. C .. Local Scalars ..
  112. COMPLEX TEMP1, TEMP2
  113. INTEGER I, INFO, IX, IY, J, JX, JY, K, KK, KX, KY
  114. C .. External Functions ..
  115. LOGICAL LSAME
  116. EXTERNAL LSAME
  117. C .. External Subroutines ..
  118. EXTERNAL XERBLA
  119. C .. Intrinsic Functions ..
  120. INTRINSIC CONJG, REAL
  121. C***FIRST EXECUTABLE STATEMENT CHPMV
  122. C
  123. C Test the input parameters.
  124. C
  125. INFO = 0
  126. IF ( .NOT.LSAME( UPLO, 'U' ).AND.
  127. $ .NOT.LSAME( UPLO, 'L' ) )THEN
  128. INFO = 1
  129. ELSE IF( N.LT.0 )THEN
  130. INFO = 2
  131. ELSE IF( INCX.EQ.0 )THEN
  132. INFO = 6
  133. ELSE IF( INCY.EQ.0 )THEN
  134. INFO = 9
  135. END IF
  136. IF( INFO.NE.0 )THEN
  137. CALL XERBLA( 'CHPMV ', INFO )
  138. RETURN
  139. END IF
  140. C
  141. C Quick return if possible.
  142. C
  143. IF( ( N.EQ.0 ).OR.( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
  144. $ RETURN
  145. C
  146. C Set up the start points in X and Y.
  147. C
  148. IF( INCX.GT.0 )THEN
  149. KX = 1
  150. ELSE
  151. KX = 1 - ( N - 1 )*INCX
  152. END IF
  153. IF( INCY.GT.0 )THEN
  154. KY = 1
  155. ELSE
  156. KY = 1 - ( N - 1 )*INCY
  157. END IF
  158. C
  159. C Start the operations. In this version the elements of the array AP
  160. C are accessed sequentially with one pass through AP.
  161. C
  162. C First form y := beta*y.
  163. C
  164. IF( BETA.NE.ONE )THEN
  165. IF( INCY.EQ.1 )THEN
  166. IF( BETA.EQ.ZERO )THEN
  167. DO 10, I = 1, N
  168. Y( I ) = ZERO
  169. 10 CONTINUE
  170. ELSE
  171. DO 20, I = 1, N
  172. Y( I ) = BETA*Y( I )
  173. 20 CONTINUE
  174. END IF
  175. ELSE
  176. IY = KY
  177. IF( BETA.EQ.ZERO )THEN
  178. DO 30, I = 1, N
  179. Y( IY ) = ZERO
  180. IY = IY + INCY
  181. 30 CONTINUE
  182. ELSE
  183. DO 40, I = 1, N
  184. Y( IY ) = BETA*Y( IY )
  185. IY = IY + INCY
  186. 40 CONTINUE
  187. END IF
  188. END IF
  189. END IF
  190. IF( ALPHA.EQ.ZERO )
  191. $ RETURN
  192. KK = 1
  193. IF( LSAME( UPLO, 'U' ) )THEN
  194. C
  195. C Form y when AP contains the upper triangle.
  196. C
  197. IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
  198. DO 60, J = 1, N
  199. TEMP1 = ALPHA*X( J )
  200. TEMP2 = ZERO
  201. K = KK
  202. DO 50, I = 1, J - 1
  203. Y( I ) = Y( I ) + TEMP1*AP( K )
  204. TEMP2 = TEMP2 + CONJG( AP( K ) )*X( I )
  205. K = K + 1
  206. 50 CONTINUE
  207. Y( J ) = Y( J ) + TEMP1*REAL( AP( KK + J - 1 ) )
  208. $ + ALPHA*TEMP2
  209. KK = KK + J
  210. 60 CONTINUE
  211. ELSE
  212. JX = KX
  213. JY = KY
  214. DO 80, J = 1, N
  215. TEMP1 = ALPHA*X( JX )
  216. TEMP2 = ZERO
  217. IX = KX
  218. IY = KY
  219. DO 70, K = KK, KK + J - 2
  220. Y( IY ) = Y( IY ) + TEMP1*AP( K )
  221. TEMP2 = TEMP2 + CONJG( AP( K ) )*X( IX )
  222. IX = IX + INCX
  223. IY = IY + INCY
  224. 70 CONTINUE
  225. Y( JY ) = Y( JY ) + TEMP1*REAL( AP( KK + J - 1 ) )
  226. $ + ALPHA*TEMP2
  227. JX = JX + INCX
  228. JY = JY + INCY
  229. KK = KK + J
  230. 80 CONTINUE
  231. END IF
  232. ELSE
  233. C
  234. C Form y when AP contains the lower triangle.
  235. C
  236. IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
  237. DO 100, J = 1, N
  238. TEMP1 = ALPHA*X( J )
  239. TEMP2 = ZERO
  240. Y( J ) = Y( J ) + TEMP1*REAL( AP( KK ) )
  241. K = KK + 1
  242. DO 90, I = J + 1, N
  243. Y( I ) = Y( I ) + TEMP1*AP( K )
  244. TEMP2 = TEMP2 + CONJG( AP( K ) )*X( I )
  245. K = K + 1
  246. 90 CONTINUE
  247. Y( J ) = Y( J ) + ALPHA*TEMP2
  248. KK = KK + ( N - J + 1 )
  249. 100 CONTINUE
  250. ELSE
  251. JX = KX
  252. JY = KY
  253. DO 120, J = 1, N
  254. TEMP1 = ALPHA*X( JX )
  255. TEMP2 = ZERO
  256. Y( JY ) = Y( JY ) + TEMP1*REAL( AP( KK ) )
  257. IX = JX
  258. IY = JY
  259. DO 110, K = KK + 1, KK + N - J
  260. IX = IX + INCX
  261. IY = IY + INCY
  262. Y( IY ) = Y( IY ) + TEMP1*AP( K )
  263. TEMP2 = TEMP2 + CONJG( AP( K ) )*X( IX )
  264. 110 CONTINUE
  265. Y( JY ) = Y( JY ) + ALPHA*TEMP2
  266. JX = JX + INCX
  267. JY = JY + INCY
  268. KK = KK + ( N - J + 1 )
  269. 120 CONTINUE
  270. END IF
  271. END IF
  272. C
  273. RETURN
  274. C
  275. C End of CHPMV .
  276. C
  277. END