chpr.f 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224
  1. *DECK CHPR
  2. SUBROUTINE CHPR (UPLO, N, ALPHA, X, INCX, AP)
  3. C***BEGIN PROLOGUE CHPR
  4. C***PURPOSE Perform the hermitian rank 1 operation.
  5. C***LIBRARY SLATEC (BLAS)
  6. C***CATEGORY D1B4
  7. C***TYPE COMPLEX (CHPR-C)
  8. C***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
  9. C***AUTHOR Dongarra, J. J., (ANL)
  10. C Du Croz, J., (NAG)
  11. C Hammarling, S., (NAG)
  12. C Hanson, R. J., (SNLA)
  13. C***DESCRIPTION
  14. C
  15. C CHPR performs the hermitian rank 1 operation
  16. C
  17. C A := alpha*x*conjg( x') + A,
  18. C
  19. C where alpha is a real scalar, x is an n element vector and A is an
  20. C n by n hermitian matrix, supplied in packed form.
  21. C
  22. C Parameters
  23. C ==========
  24. C
  25. C UPLO - CHARACTER*1.
  26. C On entry, UPLO specifies whether the upper or lower
  27. C triangular part of the matrix A is supplied in the packed
  28. C array AP as follows:
  29. C
  30. C UPLO = 'U' or 'u' The upper triangular part of A is
  31. C supplied in AP.
  32. C
  33. C UPLO = 'L' or 'l' The lower triangular part of A is
  34. C supplied in AP.
  35. C
  36. C Unchanged on exit.
  37. C
  38. C N - INTEGER.
  39. C On entry, N specifies the order of the matrix A.
  40. C N must be at least zero.
  41. C Unchanged on exit.
  42. C
  43. C ALPHA - REAL .
  44. C On entry, ALPHA specifies the scalar alpha.
  45. C Unchanged on exit.
  46. C
  47. C X - COMPLEX array of dimension at least
  48. C ( 1 + ( n - 1 )*abs( INCX ) ).
  49. C Before entry, the incremented array X must contain the n
  50. C element vector x.
  51. C Unchanged on exit.
  52. C
  53. C INCX - INTEGER.
  54. C On entry, INCX specifies the increment for the elements of
  55. C X. INCX must not be zero.
  56. C Unchanged on exit.
  57. C
  58. C AP - COMPLEX array of DIMENSION at least
  59. C ( ( n*( n + 1 ) )/2 ).
  60. C Before entry with UPLO = 'U' or 'u', the array AP must
  61. C contain the upper triangular part of the hermitian matrix
  62. C packed sequentially, column by column, so that AP( 1 )
  63. C contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
  64. C and a( 2, 2 ) respectively, and so on. On exit, the array
  65. C AP is overwritten by the upper triangular part of the
  66. C updated matrix.
  67. C Before entry with UPLO = 'L' or 'l', the array AP must
  68. C contain the lower triangular part of the hermitian matrix
  69. C packed sequentially, column by column, so that AP( 1 )
  70. C contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
  71. C and a( 3, 1 ) respectively, and so on. On exit, the array
  72. C AP is overwritten by the lower triangular part of the
  73. C updated matrix.
  74. C Note that the imaginary parts of the diagonal elements need
  75. C not be set, they are assumed to be zero, and on exit they
  76. C are set to zero.
  77. C
  78. C***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
  79. C Hanson, R. J. An extended set of Fortran basic linear
  80. C algebra subprograms. ACM TOMS, Vol. 14, No. 1,
  81. C pp. 1-17, March 1988.
  82. C***ROUTINES CALLED LSAME, XERBLA
  83. C***REVISION HISTORY (YYMMDD)
  84. C 861022 DATE WRITTEN
  85. C 910605 Modified to meet SLATEC prologue standards. Only comment
  86. C lines were modified. (BKS)
  87. C***END PROLOGUE CHPR
  88. C .. Scalar Arguments ..
  89. REAL ALPHA
  90. INTEGER INCX, N
  91. CHARACTER*1 UPLO
  92. C .. Array Arguments ..
  93. COMPLEX AP( * ), X( * )
  94. C .. Parameters ..
  95. COMPLEX ZERO
  96. PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
  97. C .. Local Scalars ..
  98. COMPLEX TEMP
  99. INTEGER I, INFO, IX, J, JX, K, KK, KX
  100. C .. External Functions ..
  101. LOGICAL LSAME
  102. EXTERNAL LSAME
  103. C .. External Subroutines ..
  104. EXTERNAL XERBLA
  105. C .. Intrinsic Functions ..
  106. INTRINSIC CONJG, REAL
  107. C***FIRST EXECUTABLE STATEMENT CHPR
  108. C
  109. C Test the input parameters.
  110. C
  111. INFO = 0
  112. IF ( .NOT.LSAME( UPLO, 'U' ).AND.
  113. $ .NOT.LSAME( UPLO, 'L' ) )THEN
  114. INFO = 1
  115. ELSE IF( N.LT.0 )THEN
  116. INFO = 2
  117. ELSE IF( INCX.EQ.0 )THEN
  118. INFO = 5
  119. END IF
  120. IF( INFO.NE.0 )THEN
  121. CALL XERBLA( 'CHPR ', INFO )
  122. RETURN
  123. END IF
  124. C
  125. C Quick return if possible.
  126. C
  127. IF( ( N.EQ.0 ).OR.( ALPHA.EQ.REAL( ZERO ) ) )
  128. $ RETURN
  129. C
  130. C Set the start point in X if the increment is not unity.
  131. C
  132. IF( INCX.LE.0 )THEN
  133. KX = 1 - ( N - 1 )*INCX
  134. ELSE IF( INCX.NE.1 )THEN
  135. KX = 1
  136. END IF
  137. C
  138. C Start the operations. In this version the elements of the array AP
  139. C are accessed sequentially with one pass through AP.
  140. C
  141. KK = 1
  142. IF( LSAME( UPLO, 'U' ) )THEN
  143. C
  144. C Form A when upper triangle is stored in AP.
  145. C
  146. IF( INCX.EQ.1 )THEN
  147. DO 20, J = 1, N
  148. IF( X( J ).NE.ZERO )THEN
  149. TEMP = ALPHA*CONJG( X( J ) )
  150. K = KK
  151. DO 10, I = 1, J - 1
  152. AP( K ) = AP( K ) + X( I )*TEMP
  153. K = K + 1
  154. 10 CONTINUE
  155. AP( KK + J - 1 ) = REAL( AP( KK + J - 1 ) )
  156. $ + REAL( X( J )*TEMP )
  157. ELSE
  158. AP( KK + J - 1 ) = REAL( AP( KK + J - 1 ) )
  159. END IF
  160. KK = KK + J
  161. 20 CONTINUE
  162. ELSE
  163. JX = KX
  164. DO 40, J = 1, N
  165. IF( X( JX ).NE.ZERO )THEN
  166. TEMP = ALPHA*CONJG( X( JX ) )
  167. IX = KX
  168. DO 30, K = KK, KK + J - 2
  169. AP( K ) = AP( K ) + X( IX )*TEMP
  170. IX = IX + INCX
  171. 30 CONTINUE
  172. AP( KK + J - 1 ) = REAL( AP( KK + J - 1 ) )
  173. $ + REAL( X( JX )*TEMP )
  174. ELSE
  175. AP( KK + J - 1 ) = REAL( AP( KK + J - 1 ) )
  176. END IF
  177. JX = JX + INCX
  178. KK = KK + J
  179. 40 CONTINUE
  180. END IF
  181. ELSE
  182. C
  183. C Form A when lower triangle is stored in AP.
  184. C
  185. IF( INCX.EQ.1 )THEN
  186. DO 60, J = 1, N
  187. IF( X( J ).NE.ZERO )THEN
  188. TEMP = ALPHA*CONJG( X( J ) )
  189. AP( KK ) = REAL( AP( KK ) ) + REAL( TEMP*X( J ) )
  190. K = KK + 1
  191. DO 50, I = J + 1, N
  192. AP( K ) = AP( K ) + X( I )*TEMP
  193. K = K + 1
  194. 50 CONTINUE
  195. ELSE
  196. AP( KK ) = REAL( AP( KK ) )
  197. END IF
  198. KK = KK + N - J + 1
  199. 60 CONTINUE
  200. ELSE
  201. JX = KX
  202. DO 80, J = 1, N
  203. IF( X( JX ).NE.ZERO )THEN
  204. TEMP = ALPHA*CONJG( X( JX ) )
  205. AP( KK ) = REAL( AP( KK ) ) + REAL( TEMP*X( JX ) )
  206. IX = JX
  207. DO 70, K = KK + 1, KK + N - J
  208. IX = IX + INCX
  209. AP( K ) = AP( K ) + X( IX )*TEMP
  210. 70 CONTINUE
  211. ELSE
  212. AP( KK ) = REAL( AP( KK ) )
  213. END IF
  214. JX = JX + INCX
  215. KK = KK + N - J + 1
  216. 80 CONTINUE
  217. END IF
  218. END IF
  219. C
  220. RETURN
  221. C
  222. C End of CHPR .
  223. C
  224. END