1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192 |
- *DECK CLNGAM
- COMPLEX FUNCTION CLNGAM (ZIN)
- C***BEGIN PROLOGUE CLNGAM
- C***PURPOSE Compute the logarithm of the absolute value of the Gamma
- C function.
- C***LIBRARY SLATEC (FNLIB)
- C***CATEGORY C7A
- C***TYPE COMPLEX (ALNGAM-S, DLNGAM-D, CLNGAM-C)
- C***KEYWORDS ABSOLUTE VALUE, COMPLETE GAMMA FUNCTION, FNLIB, LOGARITHM,
- C SPECIAL FUNCTIONS
- C***AUTHOR Fullerton, W., (LANL)
- C***DESCRIPTION
- C
- C CLNGAM computes the natural log of the complex valued gamma function
- C at ZIN, where ZIN is a complex number. This is a preliminary version,
- C which is not accurate.
- C
- C***REFERENCES (NONE)
- C***ROUTINES CALLED C9LGMC, CARG, CLNREL, R1MACH, XERMSG
- C***REVISION HISTORY (YYMMDD)
- C 780401 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890531 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
- C***END PROLOGUE CLNGAM
- COMPLEX ZIN, Z, CORR, CLNREL, C9LGMC
- LOGICAL FIRST
- SAVE PI, SQ2PIL, BOUND, DXREL, FIRST
- DATA PI / 3.1415926535 8979324E0 /
- DATA SQ2PIL / 0.9189385332 0467274E0 /
- DATA FIRST /.TRUE./
- C***FIRST EXECUTABLE STATEMENT CLNGAM
- IF (FIRST) THEN
- N = -0.30*LOG(R1MACH(3))
- C BOUND = N*(0.1*EPS)**(-1/(2*N-1))/(PI*EXP(1))
- BOUND = 0.1171*N*(0.1*R1MACH(3))**(-1./(2*N-1))
- DXREL = SQRT (R1MACH(4))
- ENDIF
- FIRST = .FALSE.
- C
- Z = ZIN
- X = REAL(ZIN)
- Y = AIMAG(ZIN)
- C
- CORR = (0.0, 0.0)
- CABSZ = ABS(Z)
- IF (X.GE.0.0 .AND. CABSZ.GT.BOUND) GO TO 50
- IF (X.LT.0.0 .AND. ABS(Y).GT.BOUND) GO TO 50
- C
- IF (CABSZ.LT.BOUND) GO TO 20
- C
- C USE THE REFLECTION FORMULA FOR REAL(Z) NEGATIVE, ABS(Z) LARGE, AND
- C ABS(AIMAG(Y)) SMALL.
- C
- IF (Y.GT.0.0) Z = CONJG (Z)
- CORR = EXP (-CMPLX(0.0,2.0*PI)*Z)
- IF (REAL(CORR) .EQ. 1.0 .AND. AIMAG(CORR) .EQ. 0.0) CALL XERMSG
- + ('SLATEC', 'CLNGAM', 'Z IS A NEGATIVE INTEGER', 3, 2)
- C
- CLNGAM = SQ2PIL + 1.0 - CMPLX(0.0,PI)*(Z-0.5) - CLNREL(-CORR)
- 1 + (Z-0.5)*LOG(1.0-Z) - Z - C9LGMC(1.0-Z)
- IF (Y.GT.0.0) CLNGAM = CONJG (CLNGAM)
- RETURN
- C
- C USE THE RECURSION RELATION FOR ABS(Z) SMALL.
- C
- 20 IF (X.GE.(-0.5) .OR. ABS(Y).GT.DXREL) GO TO 30
- IF (ABS((Z-AINT(X-0.5))/X) .LT. DXREL) CALL XERMSG ('SLATEC',
- + 'CLNGAM',
- + 'ANSWER LT HALF PRECISION BECAUSE Z TOO NEAR NEGATIVE INTEGER',
- + 1, 1)
- C
- 30 N = SQRT (BOUND**2 - Y**2) - X + 1.0
- ARGSUM = 0.0
- CORR = (1.0, 0.0)
- DO 40 I=1,N
- ARGSUM = ARGSUM + CARG(Z)
- CORR = Z*CORR
- Z = 1.0 + Z
- 40 CONTINUE
- C
- IF (REAL(CORR) .EQ. 0.0 .AND. AIMAG(CORR) .EQ. 0.0) CALL XERMSG
- + ('SLATEC', 'CLNGAM', 'Z IS A NEGATIVE INTEGER', 3, 2)
- CORR = -CMPLX (LOG(ABS(CORR)), ARGSUM)
- C
- C USE STIRLING-S APPROXIMATION FOR LARGE Z.
- C
- 50 CLNGAM = SQ2PIL + (Z-0.5)*LOG(Z) - Z + CORR + C9LGMC(Z)
- RETURN
- C
- END
|