123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383 |
- *DECK COMLR2
- SUBROUTINE COMLR2 (NM, N, LOW, IGH, INT, HR, HI, WR, WI, ZR, ZI,
- + IERR)
- C***BEGIN PROLOGUE COMLR2
- C***PURPOSE Compute the eigenvalues and eigenvectors of a complex upper
- C Hessenberg matrix using the modified LR method.
- C***LIBRARY SLATEC (EISPACK)
- C***CATEGORY D4C2B
- C***TYPE COMPLEX (COMLR2-C)
- C***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK, LR METHOD
- C***AUTHOR Smith, B. T., et al.
- C***DESCRIPTION
- C
- C This subroutine is a translation of the ALGOL procedure COMLR2,
- C NUM. MATH. 16, 181-204(1970) by Peters and Wilkinson.
- C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 372-395(1971).
- C
- C This subroutine finds the eigenvalues and eigenvectors
- C of a COMPLEX UPPER Hessenberg matrix by the modified LR
- C method. The eigenvectors of a COMPLEX GENERAL matrix
- C can also be found if COMHES has been used to reduce
- C this general matrix to Hessenberg form.
- C
- C On INPUT
- C
- C NM must be set to the row dimension of the two-dimensional
- C array parameters, HR, HI, ZR and ZI, as declared in the
- C calling program dimension statement. NM is an INTEGER
- C variable.
- C
- C N is the order of the matrix H=(HR,HI). N is an INTEGER
- C variable. N must be less than or equal to NM.
- C
- C LOW and IGH are two INTEGER variables determined by the
- C balancing subroutine CBAL. If CBAL has not been used,
- C set LOW=1 and IGH equal to the order of the matrix, N.
- C
- C INT contains information on the rows and columns
- C interchanged in the reduction by COMHES, if performed.
- C Only elements LOW through IGH are used. If you want the
- C eigenvectors of a complex general matrix, leave INT as it
- C came from COMHES. If the eigenvectors of the Hessenberg
- C matrix are desired, set INT(J)=J for these elements. INT
- C is a one-dimensional INTEGER array, dimensioned INT(IGH).
- C
- C HR and HI contain the real and imaginary parts, respectively,
- C of the complex upper Hessenberg matrix. Their lower
- C triangles below the subdiagonal contain the multipliers
- C which were used in the reduction by COMHES, if performed.
- C If the eigenvectors of a complex general matrix are
- C desired, leave these multipliers in the lower triangles.
- C If the eigenvectors of the Hessenberg matrix are desired,
- C these elements must be set to zero. HR and HI are
- C two-dimensional REAL arrays, dimensioned HR(NM,N) and
- C HI(NM,N).
- C
- C On OUTPUT
- C
- C The upper Hessenberg portions of HR and HI have been
- C destroyed, but the location HR(1,1) contains the norm
- C of the triangularized matrix.
- C
- C WR and WI contain the real and imaginary parts, respectively,
- C of the eigenvalues of the upper Hessenberg matrix. If an
- C error exit is made, the eigenvalues should be correct for
- C indices IERR+1, IERR+2, ..., N. WR and WI are one-
- C dimensional REAL arrays, dimensioned WR(N) and WI(N).
- C
- C ZR and ZI contain the real and imaginary parts, respectively,
- C of the eigenvectors. The eigenvectors are unnormalized.
- C If an error exit is made, none of the eigenvectors has been
- C found. ZR and ZI are two-dimensional REAL arrays,
- C dimensioned ZR(NM,N) and ZI(NM,N).
- C
- C IERR is an INTEGER flag set to
- C Zero for normal return,
- C J if the J-th eigenvalue has not been
- C determined after a total of 30*N iterations.
- C The eigenvalues should be correct for indices
- C IERR+1, IERR+2, ..., N, but no eigenvectors are
- C computed.
- C
- C Calls CSROOT for complex square root.
- C Calls CDIV for complex division.
- C
- C Questions and comments should be directed to B. S. Garbow,
- C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
- C ------------------------------------------------------------------
- C
- C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
- C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
- C system Routines - EISPACK Guide, Springer-Verlag,
- C 1976.
- C***ROUTINES CALLED CDIV, CSROOT
- C***REVISION HISTORY (YYMMDD)
- C 760101 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890831 Modified array declarations. (WRB)
- C 890831 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE COMLR2
- C
- INTEGER I,J,K,L,M,N,EN,II,JJ,LL,MM,NM,NN,IGH,IM1,IP1
- INTEGER ITN,ITS,LOW,MP1,ENM1,IEND,IERR
- REAL HR(NM,*),HI(NM,*),WR(*),WI(*),ZR(NM,*),ZI(NM,*)
- REAL SI,SR,TI,TR,XI,XR,YI,YR,ZZI,ZZR,NORM,S1,S2
- INTEGER INT(*)
- C
- C***FIRST EXECUTABLE STATEMENT COMLR2
- IERR = 0
- C .......... INITIALIZE EIGENVECTOR MATRIX ..........
- DO 100 I = 1, N
- C
- DO 100 J = 1, N
- ZR(I,J) = 0.0E0
- ZI(I,J) = 0.0E0
- IF (I .EQ. J) ZR(I,J) = 1.0E0
- 100 CONTINUE
- C .......... FORM THE MATRIX OF ACCUMULATED TRANSFORMATIONS
- C FROM THE INFORMATION LEFT BY COMHES ..........
- IEND = IGH - LOW - 1
- IF (IEND .LE. 0) GO TO 180
- C .......... FOR I=IGH-1 STEP -1 UNTIL LOW+1 DO -- ..........
- DO 160 II = 1, IEND
- I = IGH - II
- IP1 = I + 1
- C
- DO 120 K = IP1, IGH
- ZR(K,I) = HR(K,I-1)
- ZI(K,I) = HI(K,I-1)
- 120 CONTINUE
- C
- J = INT(I)
- IF (I .EQ. J) GO TO 160
- C
- DO 140 K = I, IGH
- ZR(I,K) = ZR(J,K)
- ZI(I,K) = ZI(J,K)
- ZR(J,K) = 0.0E0
- ZI(J,K) = 0.0E0
- 140 CONTINUE
- C
- ZR(J,I) = 1.0E0
- 160 CONTINUE
- C .......... STORE ROOTS ISOLATED BY CBAL ..........
- 180 DO 200 I = 1, N
- IF (I .GE. LOW .AND. I .LE. IGH) GO TO 200
- WR(I) = HR(I,I)
- WI(I) = HI(I,I)
- 200 CONTINUE
- C
- EN = IGH
- TR = 0.0E0
- TI = 0.0E0
- ITN = 30*N
- C .......... SEARCH FOR NEXT EIGENVALUE ..........
- 220 IF (EN .LT. LOW) GO TO 680
- ITS = 0
- ENM1 = EN - 1
- C .......... LOOK FOR SINGLE SMALL SUB-DIAGONAL ELEMENT
- C FOR L=EN STEP -1 UNTIL LOW DO -- ..........
- 240 DO 260 LL = LOW, EN
- L = EN + LOW - LL
- IF (L .EQ. LOW) GO TO 300
- S1 = ABS(HR(L-1,L-1)) + ABS(HI(L-1,L-1))
- 1 + ABS(HR(L,L)) + ABS(HI(L,L))
- S2 = S1 + ABS(HR(L,L-1)) + ABS(HI(L,L-1))
- IF (S2 .EQ. S1) GO TO 300
- 260 CONTINUE
- C .......... FORM SHIFT ..........
- 300 IF (L .EQ. EN) GO TO 660
- IF (ITN .EQ. 0) GO TO 1000
- IF (ITS .EQ. 10 .OR. ITS .EQ. 20) GO TO 320
- SR = HR(EN,EN)
- SI = HI(EN,EN)
- XR = HR(ENM1,EN) * HR(EN,ENM1) - HI(ENM1,EN) * HI(EN,ENM1)
- XI = HR(ENM1,EN) * HI(EN,ENM1) + HI(ENM1,EN) * HR(EN,ENM1)
- IF (XR .EQ. 0.0E0 .AND. XI .EQ. 0.0E0) GO TO 340
- YR = (HR(ENM1,ENM1) - SR) / 2.0E0
- YI = (HI(ENM1,ENM1) - SI) / 2.0E0
- CALL CSROOT(YR**2-YI**2+XR,2.0E0*YR*YI+XI,ZZR,ZZI)
- IF (YR * ZZR + YI * ZZI .GE. 0.0E0) GO TO 310
- ZZR = -ZZR
- ZZI = -ZZI
- 310 CALL CDIV(XR,XI,YR+ZZR,YI+ZZI,XR,XI)
- SR = SR - XR
- SI = SI - XI
- GO TO 340
- C .......... FORM EXCEPTIONAL SHIFT ..........
- 320 SR = ABS(HR(EN,ENM1)) + ABS(HR(ENM1,EN-2))
- SI = ABS(HI(EN,ENM1)) + ABS(HI(ENM1,EN-2))
- C
- 340 DO 360 I = LOW, EN
- HR(I,I) = HR(I,I) - SR
- HI(I,I) = HI(I,I) - SI
- 360 CONTINUE
- C
- TR = TR + SR
- TI = TI + SI
- ITS = ITS + 1
- ITN = ITN - 1
- C .......... LOOK FOR TWO CONSECUTIVE SMALL
- C SUB-DIAGONAL ELEMENTS ..........
- XR = ABS(HR(ENM1,ENM1)) + ABS(HI(ENM1,ENM1))
- YR = ABS(HR(EN,ENM1)) + ABS(HI(EN,ENM1))
- ZZR = ABS(HR(EN,EN)) + ABS(HI(EN,EN))
- C .......... FOR M=EN-1 STEP -1 UNTIL L DO -- ..........
- DO 380 MM = L, ENM1
- M = ENM1 + L - MM
- IF (M .EQ. L) GO TO 420
- YI = YR
- YR = ABS(HR(M,M-1)) + ABS(HI(M,M-1))
- XI = ZZR
- ZZR = XR
- XR = ABS(HR(M-1,M-1)) + ABS(HI(M-1,M-1))
- S1 = ZZR / YI * (ZZR + XR + XI)
- S2 = S1 + YR
- IF (S2 .EQ. S1) GO TO 420
- 380 CONTINUE
- C .......... TRIANGULAR DECOMPOSITION H=L*R ..........
- 420 MP1 = M + 1
- C
- DO 520 I = MP1, EN
- IM1 = I - 1
- XR = HR(IM1,IM1)
- XI = HI(IM1,IM1)
- YR = HR(I,IM1)
- YI = HI(I,IM1)
- IF (ABS(XR) + ABS(XI) .GE. ABS(YR) + ABS(YI)) GO TO 460
- C .......... INTERCHANGE ROWS OF HR AND HI ..........
- DO 440 J = IM1, N
- ZZR = HR(IM1,J)
- HR(IM1,J) = HR(I,J)
- HR(I,J) = ZZR
- ZZI = HI(IM1,J)
- HI(IM1,J) = HI(I,J)
- HI(I,J) = ZZI
- 440 CONTINUE
- C
- CALL CDIV(XR,XI,YR,YI,ZZR,ZZI)
- WR(I) = 1.0E0
- GO TO 480
- 460 CALL CDIV(YR,YI,XR,XI,ZZR,ZZI)
- WR(I) = -1.0E0
- 480 HR(I,IM1) = ZZR
- HI(I,IM1) = ZZI
- C
- DO 500 J = I, N
- HR(I,J) = HR(I,J) - ZZR * HR(IM1,J) + ZZI * HI(IM1,J)
- HI(I,J) = HI(I,J) - ZZR * HI(IM1,J) - ZZI * HR(IM1,J)
- 500 CONTINUE
- C
- 520 CONTINUE
- C .......... COMPOSITION R*L=H ..........
- DO 640 J = MP1, EN
- XR = HR(J,J-1)
- XI = HI(J,J-1)
- HR(J,J-1) = 0.0E0
- HI(J,J-1) = 0.0E0
- C .......... INTERCHANGE COLUMNS OF HR, HI, ZR, AND ZI,
- C IF NECESSARY ..........
- IF (WR(J) .LE. 0.0E0) GO TO 580
- C
- DO 540 I = 1, J
- ZZR = HR(I,J-1)
- HR(I,J-1) = HR(I,J)
- HR(I,J) = ZZR
- ZZI = HI(I,J-1)
- HI(I,J-1) = HI(I,J)
- HI(I,J) = ZZI
- 540 CONTINUE
- C
- DO 560 I = LOW, IGH
- ZZR = ZR(I,J-1)
- ZR(I,J-1) = ZR(I,J)
- ZR(I,J) = ZZR
- ZZI = ZI(I,J-1)
- ZI(I,J-1) = ZI(I,J)
- ZI(I,J) = ZZI
- 560 CONTINUE
- C
- 580 DO 600 I = 1, J
- HR(I,J-1) = HR(I,J-1) + XR * HR(I,J) - XI * HI(I,J)
- HI(I,J-1) = HI(I,J-1) + XR * HI(I,J) + XI * HR(I,J)
- 600 CONTINUE
- C .......... ACCUMULATE TRANSFORMATIONS ..........
- DO 620 I = LOW, IGH
- ZR(I,J-1) = ZR(I,J-1) + XR * ZR(I,J) - XI * ZI(I,J)
- ZI(I,J-1) = ZI(I,J-1) + XR * ZI(I,J) + XI * ZR(I,J)
- 620 CONTINUE
- C
- 640 CONTINUE
- C
- GO TO 240
- C .......... A ROOT FOUND ..........
- 660 HR(EN,EN) = HR(EN,EN) + TR
- WR(EN) = HR(EN,EN)
- HI(EN,EN) = HI(EN,EN) + TI
- WI(EN) = HI(EN,EN)
- EN = ENM1
- GO TO 220
- C .......... ALL ROOTS FOUND. BACKSUBSTITUTE TO FIND
- C VECTORS OF UPPER TRIANGULAR FORM ..........
- 680 NORM = 0.0E0
- C
- DO 720 I = 1, N
- C
- DO 720 J = I, N
- NORM = NORM + ABS(HR(I,J)) + ABS(HI(I,J))
- 720 CONTINUE
- C
- HR(1,1) = NORM
- IF (N .EQ. 1 .OR. NORM .EQ. 0.0E0) GO TO 1001
- C .......... FOR EN=N STEP -1 UNTIL 2 DO -- ..........
- DO 800 NN = 2, N
- EN = N + 2 - NN
- XR = WR(EN)
- XI = WI(EN)
- ENM1 = EN - 1
- C .......... FOR I=EN-1 STEP -1 UNTIL 1 DO -- ..........
- DO 780 II = 1, ENM1
- I = EN - II
- ZZR = HR(I,EN)
- ZZI = HI(I,EN)
- IF (I .EQ. ENM1) GO TO 760
- IP1 = I + 1
- C
- DO 740 J = IP1, ENM1
- ZZR = ZZR + HR(I,J) * HR(J,EN) - HI(I,J) * HI(J,EN)
- ZZI = ZZI + HR(I,J) * HI(J,EN) + HI(I,J) * HR(J,EN)
- 740 CONTINUE
- C
- 760 YR = XR - WR(I)
- YI = XI - WI(I)
- IF (YR .NE. 0.0E0 .OR. YI .NE. 0.0E0) GO TO 775
- YR = NORM
- 770 YR = 0.5E0*YR
- IF (NORM + YR .GT. NORM) GO TO 770
- YR = 2.0E0*YR
- 775 CALL CDIV(ZZR,ZZI,YR,YI,HR(I,EN),HI(I,EN))
- 780 CONTINUE
- C
- 800 CONTINUE
- C .......... END BACKSUBSTITUTION ..........
- ENM1 = N - 1
- C .......... VECTORS OF ISOLATED ROOTS ..........
- DO 840 I = 1, ENM1
- IF (I .GE. LOW .AND. I .LE. IGH) GO TO 840
- IP1 = I + 1
- C
- DO 820 J = IP1, N
- ZR(I,J) = HR(I,J)
- ZI(I,J) = HI(I,J)
- 820 CONTINUE
- C
- 840 CONTINUE
- C .......... MULTIPLY BY TRANSFORMATION MATRIX TO GIVE
- C VECTORS OF ORIGINAL FULL MATRIX.
- C FOR J=N STEP -1 UNTIL LOW+1 DO -- ..........
- DO 880 JJ = LOW, ENM1
- J = N + LOW - JJ
- M = MIN(J-1,IGH)
- C
- DO 880 I = LOW, IGH
- ZZR = ZR(I,J)
- ZZI = ZI(I,J)
- C
- DO 860 K = LOW, M
- ZZR = ZZR + ZR(I,K) * HR(K,J) - ZI(I,K) * HI(K,J)
- ZZI = ZZI + ZR(I,K) * HI(K,J) + ZI(I,K) * HR(K,J)
- 860 CONTINUE
- C
- ZR(I,J) = ZZR
- ZI(I,J) = ZZI
- 880 CONTINUE
- C
- GO TO 1001
- C .......... SET ERROR -- NO CONVERGENCE TO AN
- C EIGENVALUE AFTER 30*N ITERATIONS ..........
- 1000 IERR = EN
- 1001 RETURN
- END
|