123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249 |
- *DECK COMQR
- SUBROUTINE COMQR (NM, N, LOW, IGH, HR, HI, WR, WI, IERR)
- C***BEGIN PROLOGUE COMQR
- C***PURPOSE Compute the eigenvalues of complex upper Hessenberg matrix
- C using the QR method.
- C***LIBRARY SLATEC (EISPACK)
- C***CATEGORY D4C2B
- C***TYPE COMPLEX (HQR-S, COMQR-C)
- C***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
- C***AUTHOR Smith, B. T., et al.
- C***DESCRIPTION
- C
- C This subroutine is a translation of a unitary analogue of the
- C ALGOL procedure COMLR, NUM. MATH. 12, 369-376(1968) by Martin
- C and Wilkinson.
- C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 396-403(1971).
- C The unitary analogue substitutes the QR algorithm of Francis
- C (COMP. JOUR. 4, 332-345(1962)) for the LR algorithm.
- C
- C This subroutine finds the eigenvalues of a COMPLEX
- C upper Hessenberg matrix by the QR method.
- C
- C On INPUT
- C
- C NM must be set to the row dimension of the two-dimensional
- C array parameters, HR and HI, as declared in the calling
- C program dimension statement. NM is an INTEGER variable.
- C
- C N is the order of the matrix H=(HR,HI). N is an INTEGER
- C variable. N must be less than or equal to NM.
- C
- C LOW and IGH are two INTEGER variables determined by the
- C balancing subroutine CBAL. If CBAL has not been used,
- C set LOW=1 and IGH equal to the order of the matrix, N.
- C
- C HR and HI contain the real and imaginary parts, respectively,
- C of the complex upper Hessenberg matrix. Their lower
- C triangles below the subdiagonal contain information about
- C the unitary transformations used in the reduction by CORTH,
- C if performed. HR and HI are two-dimensional REAL arrays,
- C dimensioned HR(NM,N) and HI(NM,N).
- C
- C On OUTPUT
- C
- C The upper Hessenberg portions of HR and HI have been
- C destroyed. Therefore, they must be saved before calling
- C COMQR if subsequent calculation of eigenvectors is to
- C be performed.
- C
- C WR and WI contain the real and imaginary parts, respectively,
- C of the eigenvalues of the upper Hessenberg matrix. If an
- C error exit is made, the eigenvalues should be correct for
- C indices IERR+1, IERR+2, ..., N. WR and WI are one-
- C dimensional REAL arrays, dimensioned WR(N) and WI(N).
- C
- C IERR is an INTEGER flag set to
- C Zero for normal return,
- C J if the J-th eigenvalue has not been
- C determined after a total of 30*N iterations.
- C The eigenvalues should be correct for indices
- C IERR+1, IERR+2, ..., N.
- C
- C Calls CSROOT for complex square root.
- C Calls PYTHAG(A,B) for sqrt(A**2 + B**2).
- C Calls CDIV for complex division.
- C
- C Questions and comments should be directed to B. S. Garbow,
- C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
- C ------------------------------------------------------------------
- C
- C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
- C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
- C system Routines - EISPACK Guide, Springer-Verlag,
- C 1976.
- C***ROUTINES CALLED CDIV, CSROOT, PYTHAG
- C***REVISION HISTORY (YYMMDD)
- C 760101 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890831 Modified array declarations. (WRB)
- C 890831 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE COMQR
- C
- INTEGER I,J,L,N,EN,LL,NM,IGH,ITN,ITS,LOW,LP1,ENM1,IERR
- REAL HR(NM,*),HI(NM,*),WR(*),WI(*)
- REAL SI,SR,TI,TR,XI,XR,YI,YR,ZZI,ZZR,NORM,S1,S2
- REAL PYTHAG
- C
- C***FIRST EXECUTABLE STATEMENT COMQR
- IERR = 0
- IF (LOW .EQ. IGH) GO TO 180
- C .......... CREATE REAL SUBDIAGONAL ELEMENTS ..........
- L = LOW + 1
- C
- DO 170 I = L, IGH
- LL = MIN(I+1,IGH)
- IF (HI(I,I-1) .EQ. 0.0E0) GO TO 170
- NORM = PYTHAG(HR(I,I-1),HI(I,I-1))
- YR = HR(I,I-1) / NORM
- YI = HI(I,I-1) / NORM
- HR(I,I-1) = NORM
- HI(I,I-1) = 0.0E0
- C
- DO 155 J = I, IGH
- SI = YR * HI(I,J) - YI * HR(I,J)
- HR(I,J) = YR * HR(I,J) + YI * HI(I,J)
- HI(I,J) = SI
- 155 CONTINUE
- C
- DO 160 J = LOW, LL
- SI = YR * HI(J,I) + YI * HR(J,I)
- HR(J,I) = YR * HR(J,I) - YI * HI(J,I)
- HI(J,I) = SI
- 160 CONTINUE
- C
- 170 CONTINUE
- C .......... STORE ROOTS ISOLATED BY CBAL ..........
- 180 DO 200 I = 1, N
- IF (I .GE. LOW .AND. I .LE. IGH) GO TO 200
- WR(I) = HR(I,I)
- WI(I) = HI(I,I)
- 200 CONTINUE
- C
- EN = IGH
- TR = 0.0E0
- TI = 0.0E0
- ITN = 30*N
- C .......... SEARCH FOR NEXT EIGENVALUE ..........
- 220 IF (EN .LT. LOW) GO TO 1001
- ITS = 0
- ENM1 = EN - 1
- C .......... LOOK FOR SINGLE SMALL SUB-DIAGONAL ELEMENT
- C FOR L=EN STEP -1 UNTIL LOW E0 -- ..........
- 240 DO 260 LL = LOW, EN
- L = EN + LOW - LL
- IF (L .EQ. LOW) GO TO 300
- S1 = ABS(HR(L-1,L-1)) + ABS(HI(L-1,L-1))
- 1 + ABS(HR(L,L)) +ABS(HI(L,L))
- S2 = S1 + ABS(HR(L,L-1))
- IF (S2 .EQ. S1) GO TO 300
- 260 CONTINUE
- C .......... FORM SHIFT ..........
- 300 IF (L .EQ. EN) GO TO 660
- IF (ITN .EQ. 0) GO TO 1000
- IF (ITS .EQ. 10 .OR. ITS .EQ. 20) GO TO 320
- SR = HR(EN,EN)
- SI = HI(EN,EN)
- XR = HR(ENM1,EN) * HR(EN,ENM1)
- XI = HI(ENM1,EN) * HR(EN,ENM1)
- IF (XR .EQ. 0.0E0 .AND. XI .EQ. 0.0E0) GO TO 340
- YR = (HR(ENM1,ENM1) - SR) / 2.0E0
- YI = (HI(ENM1,ENM1) - SI) / 2.0E0
- CALL CSROOT(YR**2-YI**2+XR,2.0E0*YR*YI+XI,ZZR,ZZI)
- IF (YR * ZZR + YI * ZZI .GE. 0.0E0) GO TO 310
- ZZR = -ZZR
- ZZI = -ZZI
- 310 CALL CDIV(XR,XI,YR+ZZR,YI+ZZI,XR,XI)
- SR = SR - XR
- SI = SI - XI
- GO TO 340
- C .......... FORM EXCEPTIONAL SHIFT ..........
- 320 SR = ABS(HR(EN,ENM1)) + ABS(HR(ENM1,EN-2))
- SI = 0.0E0
- C
- 340 DO 360 I = LOW, EN
- HR(I,I) = HR(I,I) - SR
- HI(I,I) = HI(I,I) - SI
- 360 CONTINUE
- C
- TR = TR + SR
- TI = TI + SI
- ITS = ITS + 1
- ITN = ITN - 1
- C .......... REDUCE TO TRIANGLE (ROWS) ..........
- LP1 = L + 1
- C
- DO 500 I = LP1, EN
- SR = HR(I,I-1)
- HR(I,I-1) = 0.0E0
- NORM = PYTHAG(PYTHAG(HR(I-1,I-1),HI(I-1,I-1)),SR)
- XR = HR(I-1,I-1) / NORM
- WR(I-1) = XR
- XI = HI(I-1,I-1) / NORM
- WI(I-1) = XI
- HR(I-1,I-1) = NORM
- HI(I-1,I-1) = 0.0E0
- HI(I,I-1) = SR / NORM
- C
- DO 490 J = I, EN
- YR = HR(I-1,J)
- YI = HI(I-1,J)
- ZZR = HR(I,J)
- ZZI = HI(I,J)
- HR(I-1,J) = XR * YR + XI * YI + HI(I,I-1) * ZZR
- HI(I-1,J) = XR * YI - XI * YR + HI(I,I-1) * ZZI
- HR(I,J) = XR * ZZR - XI * ZZI - HI(I,I-1) * YR
- HI(I,J) = XR * ZZI + XI * ZZR - HI(I,I-1) * YI
- 490 CONTINUE
- C
- 500 CONTINUE
- C
- SI = HI(EN,EN)
- IF (SI .EQ. 0.0E0) GO TO 540
- NORM = PYTHAG(HR(EN,EN),SI)
- SR = HR(EN,EN) / NORM
- SI = SI / NORM
- HR(EN,EN) = NORM
- HI(EN,EN) = 0.0E0
- C .......... INVERSE OPERATION (COLUMNS) ..........
- 540 DO 600 J = LP1, EN
- XR = WR(J-1)
- XI = WI(J-1)
- C
- DO 580 I = L, J
- YR = HR(I,J-1)
- YI = 0.0E0
- ZZR = HR(I,J)
- ZZI = HI(I,J)
- IF (I .EQ. J) GO TO 560
- YI = HI(I,J-1)
- HI(I,J-1) = XR * YI + XI * YR + HI(J,J-1) * ZZI
- 560 HR(I,J-1) = XR * YR - XI * YI + HI(J,J-1) * ZZR
- HR(I,J) = XR * ZZR + XI * ZZI - HI(J,J-1) * YR
- HI(I,J) = XR * ZZI - XI * ZZR - HI(J,J-1) * YI
- 580 CONTINUE
- C
- 600 CONTINUE
- C
- IF (SI .EQ. 0.0E0) GO TO 240
- C
- DO 630 I = L, EN
- YR = HR(I,EN)
- YI = HI(I,EN)
- HR(I,EN) = SR * YR - SI * YI
- HI(I,EN) = SR * YI + SI * YR
- 630 CONTINUE
- C
- GO TO 240
- C .......... A ROOT FOUND ..........
- 660 WR(EN) = HR(EN,EN) + TR
- WI(EN) = HI(EN,EN) + TI
- EN = ENM1
- GO TO 220
- C .......... SET ERROR -- NO CONVERGENCE TO AN
- C EIGENVALUE AFTER 30*N ITERATIONS ..........
- 1000 IERR = EN
- 1001 RETURN
- END
|