123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125 |
- *DECK CORTB
- SUBROUTINE CORTB (NM, LOW, IGH, AR, AI, ORTR, ORTI, M, ZR, ZI)
- C***BEGIN PROLOGUE CORTB
- C***PURPOSE Form the eigenvectors of a complex general matrix from
- C eigenvectors of upper Hessenberg matrix output from
- C CORTH.
- C***LIBRARY SLATEC (EISPACK)
- C***CATEGORY D4C4
- C***TYPE COMPLEX (ORTBAK-S, CORTB-C)
- C***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
- C***AUTHOR Smith, B. T., et al.
- C***DESCRIPTION
- C
- C This subroutine is a translation of a complex analogue of
- C the ALGOL procedure ORTBAK, NUM. MATH. 12, 349-368(1968)
- C by Martin and Wilkinson.
- C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 339-358(1971).
- C
- C This subroutine forms the eigenvectors of a COMPLEX GENERAL
- C matrix by back transforming those of the corresponding
- C upper Hessenberg matrix determined by CORTH.
- C
- C On INPUT
- C
- C NM must be set to the row dimension of the two-dimensional
- C array parameters, AR, AI, ZR, and ZI, as declared in the
- C calling program dimension statement. NM is an INTEGER
- C variable.
- C
- C LOW and IGH are two INTEGER variables determined by the
- C balancing subroutine CBAL. If CBAL has not been used,
- C set LOW=1 and IGH equal to the order of the matrix.
- C
- C AR and AI contain information about the unitary trans-
- C formations used in the reduction by CORTH in their
- C strict lower triangles. AR and AI are two-dimensional
- C REAL arrays, dimensioned AR(NM,IGH) and AI(NM,IGH).
- C
- C ORTR and ORTI contain further information about the unitary
- C transformations used in the reduction by CORTH. Only
- C elements LOW through IGH are used. ORTR and ORTI are
- C one-dimensional REAL arrays, dimensioned ORTR(IGH) and
- C ORTI(IGH).
- C
- C M is the number of columns of Z=(ZR,ZI) to be back transformed.
- C M is an INTEGER variable.
- C
- C ZR and ZI contain the real and imaginary parts, respectively,
- C of the eigenvectors to be back transformed in their first
- C M columns. ZR and ZI are two-dimensional REAL arrays,
- C dimensioned ZR(NM,M) and ZI(NM,M).
- C
- C On OUTPUT
- C
- C ZR and ZI contain the real and imaginary parts, respectively,
- C of the transformed eigenvectors in their first M columns.
- C
- C ORTR and ORTI have been altered.
- C
- C Note that CORTB preserves vector Euclidean norms.
- C
- C Questions and comments should be directed to B. S. Garbow,
- C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
- C ------------------------------------------------------------------
- C
- C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
- C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
- C system Routines - EISPACK Guide, Springer-Verlag,
- C 1976.
- C***ROUTINES CALLED (NONE)
- C***REVISION HISTORY (YYMMDD)
- C 760101 DATE WRITTEN
- C 890831 Modified array declarations. (WRB)
- C 890831 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE CORTB
- C
- INTEGER I,J,M,LA,MM,MP,NM,IGH,KP1,LOW,MP1
- REAL AR(NM,*),AI(NM,*),ORTR(*),ORTI(*)
- REAL ZR(NM,*),ZI(NM,*)
- REAL H,GI,GR
- C
- C***FIRST EXECUTABLE STATEMENT CORTB
- IF (M .EQ. 0) GO TO 200
- LA = IGH - 1
- KP1 = LOW + 1
- IF (LA .LT. KP1) GO TO 200
- C .......... FOR MP=IGH-1 STEP -1 UNTIL LOW+1 DO -- ..........
- DO 140 MM = KP1, LA
- MP = LOW + IGH - MM
- IF (AR(MP,MP-1) .EQ. 0.0E0 .AND. AI(MP,MP-1) .EQ. 0.0E0)
- 1 GO TO 140
- C .......... H BELOW IS NEGATIVE OF H FORMED IN CORTH ..........
- H = AR(MP,MP-1) * ORTR(MP) + AI(MP,MP-1) * ORTI(MP)
- MP1 = MP + 1
- C
- DO 100 I = MP1, IGH
- ORTR(I) = AR(I,MP-1)
- ORTI(I) = AI(I,MP-1)
- 100 CONTINUE
- C
- DO 130 J = 1, M
- GR = 0.0E0
- GI = 0.0E0
- C
- DO 110 I = MP, IGH
- GR = GR + ORTR(I) * ZR(I,J) + ORTI(I) * ZI(I,J)
- GI = GI + ORTR(I) * ZI(I,J) - ORTI(I) * ZR(I,J)
- 110 CONTINUE
- C
- GR = GR / H
- GI = GI / H
- C
- DO 120 I = MP, IGH
- ZR(I,J) = ZR(I,J) + GR * ORTR(I) - GI * ORTI(I)
- ZI(I,J) = ZI(I,J) + GR * ORTI(I) + GI * ORTR(I)
- 120 CONTINUE
- C
- 130 CONTINUE
- C
- 140 CONTINUE
- C
- 200 RETURN
- END
|