cpoco.f 7.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212
  1. *DECK CPOCO
  2. SUBROUTINE CPOCO (A, LDA, N, RCOND, Z, INFO)
  3. C***BEGIN PROLOGUE CPOCO
  4. C***PURPOSE Factor a complex Hermitian positive definite matrix
  5. C and estimate the condition number of the matrix.
  6. C***LIBRARY SLATEC (LINPACK)
  7. C***CATEGORY D2D1B
  8. C***TYPE COMPLEX (SPOCO-S, DPOCO-D, CPOCO-C)
  9. C***KEYWORDS CONDITION NUMBER, LINEAR ALGEBRA, LINPACK,
  10. C MATRIX FACTORIZATION, POSITIVE DEFINITE
  11. C***AUTHOR Moler, C. B., (U. of New Mexico)
  12. C***DESCRIPTION
  13. C
  14. C CPOCO factors a complex Hermitian positive definite matrix
  15. C and estimates the condition of the matrix.
  16. C
  17. C If RCOND is not needed, CPOFA is slightly faster.
  18. C To solve A*X = B , follow CPOCO by CPOSL.
  19. C To compute INVERSE(A)*C , follow CPOCO by CPOSL.
  20. C To compute DETERMINANT(A) , follow CPOCO by CPODI.
  21. C To compute INVERSE(A) , follow CPOCO by CPODI.
  22. C
  23. C On Entry
  24. C
  25. C A COMPLEX(LDA, N)
  26. C the Hermitian matrix to be factored. Only the
  27. C diagonal and upper triangle are used.
  28. C
  29. C LDA INTEGER
  30. C the leading dimension of the array A .
  31. C
  32. C N INTEGER
  33. C the order of the matrix A .
  34. C
  35. C On Return
  36. C
  37. C A an upper triangular matrix R so that A =
  38. C CTRANS(R)*R where CTRANS(R) is the conjugate
  39. C transpose. The strict lower triangle is unaltered.
  40. C If INFO .NE. 0 , the factorization is not complete.
  41. C
  42. C RCOND REAL
  43. C an estimate of the reciprocal condition of A .
  44. C For the system A*X = B , relative perturbations
  45. C in A and B of size EPSILON may cause
  46. C relative perturbations in X of size EPSILON/RCOND .
  47. C If RCOND is so small that the logical expression
  48. C 1.0 + RCOND .EQ. 1.0
  49. C is true, then A may be singular to working
  50. C precision. In particular, RCOND is zero if
  51. C exact singularity is detected or the estimate
  52. C underflows. If INFO .NE. 0 , RCOND is unchanged.
  53. C
  54. C Z COMPLEX(N)
  55. C a work vector whose contents are usually unimportant.
  56. C If A is close to a singular matrix, then Z is
  57. C an approximate null vector in the sense that
  58. C NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .
  59. C If INFO .NE. 0 , Z is unchanged.
  60. C
  61. C INFO INTEGER
  62. C = 0 for normal return.
  63. C = K signals an error condition. The leading minor
  64. C of order K is not positive definite.
  65. C
  66. C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
  67. C Stewart, LINPACK Users' Guide, SIAM, 1979.
  68. C***ROUTINES CALLED CAXPY, CDOTC, CPOFA, CSSCAL, SCASUM
  69. C***REVISION HISTORY (YYMMDD)
  70. C 780814 DATE WRITTEN
  71. C 890531 Changed all specific intrinsics to generic. (WRB)
  72. C 890831 Modified array declarations. (WRB)
  73. C 890831 REVISION DATE from Version 3.2
  74. C 891214 Prologue converted to Version 4.0 format. (BAB)
  75. C 900326 Removed duplicate information from DESCRIPTION section.
  76. C (WRB)
  77. C 920501 Reformatted the REFERENCES section. (WRB)
  78. C***END PROLOGUE CPOCO
  79. INTEGER LDA,N,INFO
  80. COMPLEX A(LDA,*),Z(*)
  81. REAL RCOND
  82. C
  83. COMPLEX CDOTC,EK,T,WK,WKM
  84. REAL ANORM,S,SCASUM,SM,YNORM
  85. INTEGER I,J,JM1,K,KB,KP1
  86. COMPLEX ZDUM,ZDUM2,CSIGN1
  87. REAL CABS1
  88. CABS1(ZDUM) = ABS(REAL(ZDUM)) + ABS(AIMAG(ZDUM))
  89. CSIGN1(ZDUM,ZDUM2) = CABS1(ZDUM)*(ZDUM2/CABS1(ZDUM2))
  90. C
  91. C FIND NORM OF A USING ONLY UPPER HALF
  92. C
  93. C***FIRST EXECUTABLE STATEMENT CPOCO
  94. DO 30 J = 1, N
  95. Z(J) = CMPLX(SCASUM(J,A(1,J),1),0.0E0)
  96. JM1 = J - 1
  97. IF (JM1 .LT. 1) GO TO 20
  98. DO 10 I = 1, JM1
  99. Z(I) = CMPLX(REAL(Z(I))+CABS1(A(I,J)),0.0E0)
  100. 10 CONTINUE
  101. 20 CONTINUE
  102. 30 CONTINUE
  103. ANORM = 0.0E0
  104. DO 40 J = 1, N
  105. ANORM = MAX(ANORM,REAL(Z(J)))
  106. 40 CONTINUE
  107. C
  108. C FACTOR
  109. C
  110. CALL CPOFA(A,LDA,N,INFO)
  111. IF (INFO .NE. 0) GO TO 180
  112. C
  113. C RCOND = 1/(NORM(A)*(ESTIMATE OF NORM(INVERSE(A)))) .
  114. C ESTIMATE = NORM(Z)/NORM(Y) WHERE A*Z = Y AND A*Y = E .
  115. C THE COMPONENTS OF E ARE CHOSEN TO CAUSE MAXIMUM LOCAL
  116. C GROWTH IN THE ELEMENTS OF W WHERE CTRANS(R)*W = E .
  117. C THE VECTORS ARE FREQUENTLY RESCALED TO AVOID OVERFLOW.
  118. C
  119. C SOLVE CTRANS(R)*W = E
  120. C
  121. EK = (1.0E0,0.0E0)
  122. DO 50 J = 1, N
  123. Z(J) = (0.0E0,0.0E0)
  124. 50 CONTINUE
  125. DO 110 K = 1, N
  126. IF (CABS1(Z(K)) .NE. 0.0E0) EK = CSIGN1(EK,-Z(K))
  127. IF (CABS1(EK-Z(K)) .LE. REAL(A(K,K))) GO TO 60
  128. S = REAL(A(K,K))/CABS1(EK-Z(K))
  129. CALL CSSCAL(N,S,Z,1)
  130. EK = CMPLX(S,0.0E0)*EK
  131. 60 CONTINUE
  132. WK = EK - Z(K)
  133. WKM = -EK - Z(K)
  134. S = CABS1(WK)
  135. SM = CABS1(WKM)
  136. WK = WK/A(K,K)
  137. WKM = WKM/A(K,K)
  138. KP1 = K + 1
  139. IF (KP1 .GT. N) GO TO 100
  140. DO 70 J = KP1, N
  141. SM = SM + CABS1(Z(J)+WKM*CONJG(A(K,J)))
  142. Z(J) = Z(J) + WK*CONJG(A(K,J))
  143. S = S + CABS1(Z(J))
  144. 70 CONTINUE
  145. IF (S .GE. SM) GO TO 90
  146. T = WKM - WK
  147. WK = WKM
  148. DO 80 J = KP1, N
  149. Z(J) = Z(J) + T*CONJG(A(K,J))
  150. 80 CONTINUE
  151. 90 CONTINUE
  152. 100 CONTINUE
  153. Z(K) = WK
  154. 110 CONTINUE
  155. S = 1.0E0/SCASUM(N,Z,1)
  156. CALL CSSCAL(N,S,Z,1)
  157. C
  158. C SOLVE R*Y = W
  159. C
  160. DO 130 KB = 1, N
  161. K = N + 1 - KB
  162. IF (CABS1(Z(K)) .LE. REAL(A(K,K))) GO TO 120
  163. S = REAL(A(K,K))/CABS1(Z(K))
  164. CALL CSSCAL(N,S,Z,1)
  165. 120 CONTINUE
  166. Z(K) = Z(K)/A(K,K)
  167. T = -Z(K)
  168. CALL CAXPY(K-1,T,A(1,K),1,Z(1),1)
  169. 130 CONTINUE
  170. S = 1.0E0/SCASUM(N,Z,1)
  171. CALL CSSCAL(N,S,Z,1)
  172. C
  173. YNORM = 1.0E0
  174. C
  175. C SOLVE CTRANS(R)*V = Y
  176. C
  177. DO 150 K = 1, N
  178. Z(K) = Z(K) - CDOTC(K-1,A(1,K),1,Z(1),1)
  179. IF (CABS1(Z(K)) .LE. REAL(A(K,K))) GO TO 140
  180. S = REAL(A(K,K))/CABS1(Z(K))
  181. CALL CSSCAL(N,S,Z,1)
  182. YNORM = S*YNORM
  183. 140 CONTINUE
  184. Z(K) = Z(K)/A(K,K)
  185. 150 CONTINUE
  186. S = 1.0E0/SCASUM(N,Z,1)
  187. CALL CSSCAL(N,S,Z,1)
  188. YNORM = S*YNORM
  189. C
  190. C SOLVE R*Z = V
  191. C
  192. DO 170 KB = 1, N
  193. K = N + 1 - KB
  194. IF (CABS1(Z(K)) .LE. REAL(A(K,K))) GO TO 160
  195. S = REAL(A(K,K))/CABS1(Z(K))
  196. CALL CSSCAL(N,S,Z,1)
  197. YNORM = S*YNORM
  198. 160 CONTINUE
  199. Z(K) = Z(K)/A(K,K)
  200. T = -Z(K)
  201. CALL CAXPY(K-1,T,A(1,K),1,Z(1),1)
  202. 170 CONTINUE
  203. C MAKE ZNORM = 1.0
  204. S = 1.0E0/SCASUM(N,Z,1)
  205. CALL CSSCAL(N,S,Z,1)
  206. YNORM = S*YNORM
  207. C
  208. IF (ANORM .NE. 0.0E0) RCOND = YNORM/ANORM
  209. IF (ANORM .EQ. 0.0E0) RCOND = 0.0E0
  210. 180 CONTINUE
  211. RETURN
  212. END