123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237 |
- *DECK CPPCO
- SUBROUTINE CPPCO (AP, N, RCOND, Z, INFO)
- C***BEGIN PROLOGUE CPPCO
- C***PURPOSE Factor a complex Hermitian positive definite matrix stored
- C in packed form and estimate the condition number of the
- C matrix.
- C***LIBRARY SLATEC (LINPACK)
- C***CATEGORY D2D1B
- C***TYPE COMPLEX (SPPCO-S, DPPCO-D, CPPCO-C)
- C***KEYWORDS CONDITION NUMBER, LINEAR ALGEBRA, LINPACK,
- C MATRIX FACTORIZATION, PACKED, POSITIVE DEFINITE
- C***AUTHOR Moler, C. B., (U. of New Mexico)
- C***DESCRIPTION
- C
- C CPPCO factors a complex Hermitian positive definite matrix
- C stored in packed form and estimates the condition of the matrix.
- C
- C If RCOND is not needed, CPPFA is slightly faster.
- C To solve A*X = B , follow CPPCO by CPPSL.
- C To compute INVERSE(A)*C , follow CPPCO by CPPSL.
- C To compute DETERMINANT(A) , follow CPPCO by CPPDI.
- C To compute INVERSE(A) , follow CPPCO by CPPDI.
- C
- C On Entry
- C
- C AP COMPLEX (N*(N+1)/2)
- C the packed form of a Hermitian matrix A . The
- C columns of the upper triangle are stored sequentially
- C in a one-dimensional array of length N*(N+1)/2 .
- C See comments below for details.
- C
- C N INTEGER
- C the order of the matrix A .
- C
- C On Return
- C
- C AP an upper triangular matrix R , stored in packed
- C form, so that A = CTRANS(R)*R .
- C If INFO .NE. 0 , the factorization is not complete.
- C
- C RCOND REAL
- C an estimate of the reciprocal condition of A .
- C For the system A*X = B , relative perturbations
- C in A and B of size EPSILON may cause
- C relative perturbations in X of size EPSILON/RCOND .
- C If RCOND is so small that the logical expression
- C 1.0 + RCOND .EQ. 1.0
- C is true, then A may be singular to working
- C precision. In particular, RCOND is zero if
- C exact singularity is detected or the estimate
- C underflows. If INFO .NE. 0 , RCOND is unchanged.
- C
- C Z COMPLEX(N)
- C a work vector whose contents are usually unimportant.
- C If A is singular to working precision, then Z is
- C an approximate null vector in the sense that
- C NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .
- C If INFO .NE. 0 , Z is unchanged.
- C
- C INFO INTEGER
- C = 0 for normal return.
- C = K signals an error condition. The leading minor
- C of order K is not positive definite.
- C
- C Packed Storage
- C
- C The following program segment will pack the upper
- C triangle of a Hermitian matrix.
- C
- C K = 0
- C DO 20 J = 1, N
- C DO 10 I = 1, J
- C K = K + 1
- C AP(K) = A(I,J)
- C 10 CONTINUE
- C 20 CONTINUE
- C
- C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
- C Stewart, LINPACK Users' Guide, SIAM, 1979.
- C***ROUTINES CALLED CAXPY, CDOTC, CPPFA, CSSCAL, SCASUM
- C***REVISION HISTORY (YYMMDD)
- C 780814 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890831 Modified array declarations. (WRB)
- C 890831 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 900326 Removed duplicate information from DESCRIPTION section.
- C (WRB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE CPPCO
- INTEGER N,INFO
- COMPLEX AP(*),Z(*)
- REAL RCOND
- C
- COMPLEX CDOTC,EK,T,WK,WKM
- REAL ANORM,S,SCASUM,SM,YNORM
- INTEGER I,IJ,J,JM1,J1,K,KB,KJ,KK,KP1
- COMPLEX ZDUM,ZDUM2,CSIGN1
- REAL CABS1
- CABS1(ZDUM) = ABS(REAL(ZDUM)) + ABS(AIMAG(ZDUM))
- CSIGN1(ZDUM,ZDUM2) = CABS1(ZDUM)*(ZDUM2/CABS1(ZDUM2))
- C
- C FIND NORM OF A
- C
- C***FIRST EXECUTABLE STATEMENT CPPCO
- J1 = 1
- DO 30 J = 1, N
- Z(J) = CMPLX(SCASUM(J,AP(J1),1),0.0E0)
- IJ = J1
- J1 = J1 + J
- JM1 = J - 1
- IF (JM1 .LT. 1) GO TO 20
- DO 10 I = 1, JM1
- Z(I) = CMPLX(REAL(Z(I))+CABS1(AP(IJ)),0.0E0)
- IJ = IJ + 1
- 10 CONTINUE
- 20 CONTINUE
- 30 CONTINUE
- ANORM = 0.0E0
- DO 40 J = 1, N
- ANORM = MAX(ANORM,REAL(Z(J)))
- 40 CONTINUE
- C
- C FACTOR
- C
- CALL CPPFA(AP,N,INFO)
- IF (INFO .NE. 0) GO TO 180
- C
- C RCOND = 1/(NORM(A)*(ESTIMATE OF NORM(INVERSE(A)))) .
- C ESTIMATE = NORM(Z)/NORM(Y) WHERE A*Z = Y AND A*Y = E .
- C THE COMPONENTS OF E ARE CHOSEN TO CAUSE MAXIMUM LOCAL
- C GROWTH IN THE ELEMENTS OF W WHERE CTRANS(R)*W = E .
- C THE VECTORS ARE FREQUENTLY RESCALED TO AVOID OVERFLOW.
- C
- C SOLVE CTRANS(R)*W = E
- C
- EK = (1.0E0,0.0E0)
- DO 50 J = 1, N
- Z(J) = (0.0E0,0.0E0)
- 50 CONTINUE
- KK = 0
- DO 110 K = 1, N
- KK = KK + K
- IF (CABS1(Z(K)) .NE. 0.0E0) EK = CSIGN1(EK,-Z(K))
- IF (CABS1(EK-Z(K)) .LE. REAL(AP(KK))) GO TO 60
- S = REAL(AP(KK))/CABS1(EK-Z(K))
- CALL CSSCAL(N,S,Z,1)
- EK = CMPLX(S,0.0E0)*EK
- 60 CONTINUE
- WK = EK - Z(K)
- WKM = -EK - Z(K)
- S = CABS1(WK)
- SM = CABS1(WKM)
- WK = WK/AP(KK)
- WKM = WKM/AP(KK)
- KP1 = K + 1
- KJ = KK + K
- IF (KP1 .GT. N) GO TO 100
- DO 70 J = KP1, N
- SM = SM + CABS1(Z(J)+WKM*CONJG(AP(KJ)))
- Z(J) = Z(J) + WK*CONJG(AP(KJ))
- S = S + CABS1(Z(J))
- KJ = KJ + J
- 70 CONTINUE
- IF (S .GE. SM) GO TO 90
- T = WKM - WK
- WK = WKM
- KJ = KK + K
- DO 80 J = KP1, N
- Z(J) = Z(J) + T*CONJG(AP(KJ))
- KJ = KJ + J
- 80 CONTINUE
- 90 CONTINUE
- 100 CONTINUE
- Z(K) = WK
- 110 CONTINUE
- S = 1.0E0/SCASUM(N,Z,1)
- CALL CSSCAL(N,S,Z,1)
- C
- C SOLVE R*Y = W
- C
- DO 130 KB = 1, N
- K = N + 1 - KB
- IF (CABS1(Z(K)) .LE. REAL(AP(KK))) GO TO 120
- S = REAL(AP(KK))/CABS1(Z(K))
- CALL CSSCAL(N,S,Z,1)
- 120 CONTINUE
- Z(K) = Z(K)/AP(KK)
- KK = KK - K
- T = -Z(K)
- CALL CAXPY(K-1,T,AP(KK+1),1,Z(1),1)
- 130 CONTINUE
- S = 1.0E0/SCASUM(N,Z,1)
- CALL CSSCAL(N,S,Z,1)
- C
- YNORM = 1.0E0
- C
- C SOLVE CTRANS(R)*V = Y
- C
- DO 150 K = 1, N
- Z(K) = Z(K) - CDOTC(K-1,AP(KK+1),1,Z(1),1)
- KK = KK + K
- IF (CABS1(Z(K)) .LE. REAL(AP(KK))) GO TO 140
- S = REAL(AP(KK))/CABS1(Z(K))
- CALL CSSCAL(N,S,Z,1)
- YNORM = S*YNORM
- 140 CONTINUE
- Z(K) = Z(K)/AP(KK)
- 150 CONTINUE
- S = 1.0E0/SCASUM(N,Z,1)
- CALL CSSCAL(N,S,Z,1)
- YNORM = S*YNORM
- C
- C SOLVE R*Z = V
- C
- DO 170 KB = 1, N
- K = N + 1 - KB
- IF (CABS1(Z(K)) .LE. REAL(AP(KK))) GO TO 160
- S = REAL(AP(KK))/CABS1(Z(K))
- CALL CSSCAL(N,S,Z,1)
- YNORM = S*YNORM
- 160 CONTINUE
- Z(K) = Z(K)/AP(KK)
- KK = KK - K
- T = -Z(K)
- CALL CAXPY(K-1,T,AP(KK+1),1,Z(1),1)
- 170 CONTINUE
- C MAKE ZNORM = 1.0
- S = 1.0E0/SCASUM(N,Z,1)
- CALL CSSCAL(N,S,Z,1)
- YNORM = S*YNORM
- C
- IF (ANORM .NE. 0.0E0) RCOND = YNORM/ANORM
- IF (ANORM .EQ. 0.0E0) RCOND = 0.0E0
- 180 CONTINUE
- RETURN
- END
|