cppco.f 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237
  1. *DECK CPPCO
  2. SUBROUTINE CPPCO (AP, N, RCOND, Z, INFO)
  3. C***BEGIN PROLOGUE CPPCO
  4. C***PURPOSE Factor a complex Hermitian positive definite matrix stored
  5. C in packed form and estimate the condition number of the
  6. C matrix.
  7. C***LIBRARY SLATEC (LINPACK)
  8. C***CATEGORY D2D1B
  9. C***TYPE COMPLEX (SPPCO-S, DPPCO-D, CPPCO-C)
  10. C***KEYWORDS CONDITION NUMBER, LINEAR ALGEBRA, LINPACK,
  11. C MATRIX FACTORIZATION, PACKED, POSITIVE DEFINITE
  12. C***AUTHOR Moler, C. B., (U. of New Mexico)
  13. C***DESCRIPTION
  14. C
  15. C CPPCO factors a complex Hermitian positive definite matrix
  16. C stored in packed form and estimates the condition of the matrix.
  17. C
  18. C If RCOND is not needed, CPPFA is slightly faster.
  19. C To solve A*X = B , follow CPPCO by CPPSL.
  20. C To compute INVERSE(A)*C , follow CPPCO by CPPSL.
  21. C To compute DETERMINANT(A) , follow CPPCO by CPPDI.
  22. C To compute INVERSE(A) , follow CPPCO by CPPDI.
  23. C
  24. C On Entry
  25. C
  26. C AP COMPLEX (N*(N+1)/2)
  27. C the packed form of a Hermitian matrix A . The
  28. C columns of the upper triangle are stored sequentially
  29. C in a one-dimensional array of length N*(N+1)/2 .
  30. C See comments below for details.
  31. C
  32. C N INTEGER
  33. C the order of the matrix A .
  34. C
  35. C On Return
  36. C
  37. C AP an upper triangular matrix R , stored in packed
  38. C form, so that A = CTRANS(R)*R .
  39. C If INFO .NE. 0 , the factorization is not complete.
  40. C
  41. C RCOND REAL
  42. C an estimate of the reciprocal condition of A .
  43. C For the system A*X = B , relative perturbations
  44. C in A and B of size EPSILON may cause
  45. C relative perturbations in X of size EPSILON/RCOND .
  46. C If RCOND is so small that the logical expression
  47. C 1.0 + RCOND .EQ. 1.0
  48. C is true, then A may be singular to working
  49. C precision. In particular, RCOND is zero if
  50. C exact singularity is detected or the estimate
  51. C underflows. If INFO .NE. 0 , RCOND is unchanged.
  52. C
  53. C Z COMPLEX(N)
  54. C a work vector whose contents are usually unimportant.
  55. C If A is singular to working precision, then Z is
  56. C an approximate null vector in the sense that
  57. C NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .
  58. C If INFO .NE. 0 , Z is unchanged.
  59. C
  60. C INFO INTEGER
  61. C = 0 for normal return.
  62. C = K signals an error condition. The leading minor
  63. C of order K is not positive definite.
  64. C
  65. C Packed Storage
  66. C
  67. C The following program segment will pack the upper
  68. C triangle of a Hermitian matrix.
  69. C
  70. C K = 0
  71. C DO 20 J = 1, N
  72. C DO 10 I = 1, J
  73. C K = K + 1
  74. C AP(K) = A(I,J)
  75. C 10 CONTINUE
  76. C 20 CONTINUE
  77. C
  78. C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
  79. C Stewart, LINPACK Users' Guide, SIAM, 1979.
  80. C***ROUTINES CALLED CAXPY, CDOTC, CPPFA, CSSCAL, SCASUM
  81. C***REVISION HISTORY (YYMMDD)
  82. C 780814 DATE WRITTEN
  83. C 890531 Changed all specific intrinsics to generic. (WRB)
  84. C 890831 Modified array declarations. (WRB)
  85. C 890831 REVISION DATE from Version 3.2
  86. C 891214 Prologue converted to Version 4.0 format. (BAB)
  87. C 900326 Removed duplicate information from DESCRIPTION section.
  88. C (WRB)
  89. C 920501 Reformatted the REFERENCES section. (WRB)
  90. C***END PROLOGUE CPPCO
  91. INTEGER N,INFO
  92. COMPLEX AP(*),Z(*)
  93. REAL RCOND
  94. C
  95. COMPLEX CDOTC,EK,T,WK,WKM
  96. REAL ANORM,S,SCASUM,SM,YNORM
  97. INTEGER I,IJ,J,JM1,J1,K,KB,KJ,KK,KP1
  98. COMPLEX ZDUM,ZDUM2,CSIGN1
  99. REAL CABS1
  100. CABS1(ZDUM) = ABS(REAL(ZDUM)) + ABS(AIMAG(ZDUM))
  101. CSIGN1(ZDUM,ZDUM2) = CABS1(ZDUM)*(ZDUM2/CABS1(ZDUM2))
  102. C
  103. C FIND NORM OF A
  104. C
  105. C***FIRST EXECUTABLE STATEMENT CPPCO
  106. J1 = 1
  107. DO 30 J = 1, N
  108. Z(J) = CMPLX(SCASUM(J,AP(J1),1),0.0E0)
  109. IJ = J1
  110. J1 = J1 + J
  111. JM1 = J - 1
  112. IF (JM1 .LT. 1) GO TO 20
  113. DO 10 I = 1, JM1
  114. Z(I) = CMPLX(REAL(Z(I))+CABS1(AP(IJ)),0.0E0)
  115. IJ = IJ + 1
  116. 10 CONTINUE
  117. 20 CONTINUE
  118. 30 CONTINUE
  119. ANORM = 0.0E0
  120. DO 40 J = 1, N
  121. ANORM = MAX(ANORM,REAL(Z(J)))
  122. 40 CONTINUE
  123. C
  124. C FACTOR
  125. C
  126. CALL CPPFA(AP,N,INFO)
  127. IF (INFO .NE. 0) GO TO 180
  128. C
  129. C RCOND = 1/(NORM(A)*(ESTIMATE OF NORM(INVERSE(A)))) .
  130. C ESTIMATE = NORM(Z)/NORM(Y) WHERE A*Z = Y AND A*Y = E .
  131. C THE COMPONENTS OF E ARE CHOSEN TO CAUSE MAXIMUM LOCAL
  132. C GROWTH IN THE ELEMENTS OF W WHERE CTRANS(R)*W = E .
  133. C THE VECTORS ARE FREQUENTLY RESCALED TO AVOID OVERFLOW.
  134. C
  135. C SOLVE CTRANS(R)*W = E
  136. C
  137. EK = (1.0E0,0.0E0)
  138. DO 50 J = 1, N
  139. Z(J) = (0.0E0,0.0E0)
  140. 50 CONTINUE
  141. KK = 0
  142. DO 110 K = 1, N
  143. KK = KK + K
  144. IF (CABS1(Z(K)) .NE. 0.0E0) EK = CSIGN1(EK,-Z(K))
  145. IF (CABS1(EK-Z(K)) .LE. REAL(AP(KK))) GO TO 60
  146. S = REAL(AP(KK))/CABS1(EK-Z(K))
  147. CALL CSSCAL(N,S,Z,1)
  148. EK = CMPLX(S,0.0E0)*EK
  149. 60 CONTINUE
  150. WK = EK - Z(K)
  151. WKM = -EK - Z(K)
  152. S = CABS1(WK)
  153. SM = CABS1(WKM)
  154. WK = WK/AP(KK)
  155. WKM = WKM/AP(KK)
  156. KP1 = K + 1
  157. KJ = KK + K
  158. IF (KP1 .GT. N) GO TO 100
  159. DO 70 J = KP1, N
  160. SM = SM + CABS1(Z(J)+WKM*CONJG(AP(KJ)))
  161. Z(J) = Z(J) + WK*CONJG(AP(KJ))
  162. S = S + CABS1(Z(J))
  163. KJ = KJ + J
  164. 70 CONTINUE
  165. IF (S .GE. SM) GO TO 90
  166. T = WKM - WK
  167. WK = WKM
  168. KJ = KK + K
  169. DO 80 J = KP1, N
  170. Z(J) = Z(J) + T*CONJG(AP(KJ))
  171. KJ = KJ + J
  172. 80 CONTINUE
  173. 90 CONTINUE
  174. 100 CONTINUE
  175. Z(K) = WK
  176. 110 CONTINUE
  177. S = 1.0E0/SCASUM(N,Z,1)
  178. CALL CSSCAL(N,S,Z,1)
  179. C
  180. C SOLVE R*Y = W
  181. C
  182. DO 130 KB = 1, N
  183. K = N + 1 - KB
  184. IF (CABS1(Z(K)) .LE. REAL(AP(KK))) GO TO 120
  185. S = REAL(AP(KK))/CABS1(Z(K))
  186. CALL CSSCAL(N,S,Z,1)
  187. 120 CONTINUE
  188. Z(K) = Z(K)/AP(KK)
  189. KK = KK - K
  190. T = -Z(K)
  191. CALL CAXPY(K-1,T,AP(KK+1),1,Z(1),1)
  192. 130 CONTINUE
  193. S = 1.0E0/SCASUM(N,Z,1)
  194. CALL CSSCAL(N,S,Z,1)
  195. C
  196. YNORM = 1.0E0
  197. C
  198. C SOLVE CTRANS(R)*V = Y
  199. C
  200. DO 150 K = 1, N
  201. Z(K) = Z(K) - CDOTC(K-1,AP(KK+1),1,Z(1),1)
  202. KK = KK + K
  203. IF (CABS1(Z(K)) .LE. REAL(AP(KK))) GO TO 140
  204. S = REAL(AP(KK))/CABS1(Z(K))
  205. CALL CSSCAL(N,S,Z,1)
  206. YNORM = S*YNORM
  207. 140 CONTINUE
  208. Z(K) = Z(K)/AP(KK)
  209. 150 CONTINUE
  210. S = 1.0E0/SCASUM(N,Z,1)
  211. CALL CSSCAL(N,S,Z,1)
  212. YNORM = S*YNORM
  213. C
  214. C SOLVE R*Z = V
  215. C
  216. DO 170 KB = 1, N
  217. K = N + 1 - KB
  218. IF (CABS1(Z(K)) .LE. REAL(AP(KK))) GO TO 160
  219. S = REAL(AP(KK))/CABS1(Z(K))
  220. CALL CSSCAL(N,S,Z,1)
  221. YNORM = S*YNORM
  222. 160 CONTINUE
  223. Z(K) = Z(K)/AP(KK)
  224. KK = KK - K
  225. T = -Z(K)
  226. CALL CAXPY(K-1,T,AP(KK+1),1,Z(1),1)
  227. 170 CONTINUE
  228. C MAKE ZNORM = 1.0
  229. S = 1.0E0/SCASUM(N,Z,1)
  230. CALL CSSCAL(N,S,Z,1)
  231. YNORM = S*YNORM
  232. C
  233. IF (ANORM .NE. 0.0E0) RCOND = YNORM/ANORM
  234. IF (ANORM .EQ. 0.0E0) RCOND = 0.0E0
  235. 180 CONTINUE
  236. RETURN
  237. END