csico.f 8.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265
  1. *DECK CSICO
  2. SUBROUTINE CSICO (A, LDA, N, KPVT, RCOND, Z)
  3. C***BEGIN PROLOGUE CSICO
  4. C***PURPOSE Factor a complex symmetric matrix by elimination with
  5. C symmetric pivoting and estimate the condition number of the
  6. C matrix.
  7. C***LIBRARY SLATEC (LINPACK)
  8. C***CATEGORY D2C1
  9. C***TYPE COMPLEX (SSICO-S, DSICO-D, CHICO-C, CSICO-C)
  10. C***KEYWORDS CONDITION NUMBER, LINEAR ALGEBRA, LINPACK,
  11. C MATRIX FACTORIZATION, SYMMETRIC
  12. C***AUTHOR Moler, C. B., (U. of New Mexico)
  13. C***DESCRIPTION
  14. C
  15. C CSICO factors a complex symmetric matrix by elimination with
  16. C symmetric pivoting and estimates the condition of the matrix.
  17. C
  18. C If RCOND is not needed, CSIFA is slightly faster.
  19. C To solve A*X = B , follow CSICO by CSISL.
  20. C To compute INVERSE(A)*C , follow CSICO by CSISL.
  21. C To compute INVERSE(A) , follow CSICO by CSIDI.
  22. C To compute DETERMINANT(A) , follow CSICO by CSIDI.
  23. C
  24. C On Entry
  25. C
  26. C A COMPLEX(LDA, N)
  27. C the symmetric matrix to be factored.
  28. C Only the diagonal and upper triangle are used.
  29. C
  30. C LDA INTEGER
  31. C the leading dimension of the array A .
  32. C
  33. C N INTEGER
  34. C the order of the matrix A .
  35. C
  36. C On Return
  37. C
  38. C A a block diagonal matrix and the multipliers which
  39. C were used to obtain it.
  40. C The factorization can be written A = U*D*TRANS(U)
  41. C where U is a product of permutation and unit
  42. C upper triangular matrices , TRANS(U) is the
  43. C transpose of U , and D is block diagonal
  44. C with 1 by 1 and 2 by 2 blocks.
  45. C
  46. C KVPT INTEGER(N)
  47. C an integer vector of pivot indices.
  48. C
  49. C RCOND REAL
  50. C an estimate of the reciprocal condition of A .
  51. C For the system A*X = B , relative perturbations
  52. C in A and B of size EPSILON may cause
  53. C relative perturbations in X of size EPSILON/RCOND .
  54. C If RCOND is so small that the logical expression
  55. C 1.0 + RCOND .EQ. 1.0
  56. C is true, then A may be singular to working
  57. C precision. In particular, RCOND is zero if
  58. C exact singularity is detected or the estimate
  59. C underflows.
  60. C
  61. C Z COMPLEX(N)
  62. C a work vector whose contents are usually unimportant.
  63. C If A is close to a singular matrix, then Z is
  64. C an approximate null vector in the sense that
  65. C NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .
  66. C
  67. C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
  68. C Stewart, LINPACK Users' Guide, SIAM, 1979.
  69. C***ROUTINES CALLED CAXPY, CDOTU, CSIFA, CSSCAL, SCASUM
  70. C***REVISION HISTORY (YYMMDD)
  71. C 780814 DATE WRITTEN
  72. C 890531 Changed all specific intrinsics to generic. (WRB)
  73. C 890831 Modified array declarations. (WRB)
  74. C 891107 Corrected category and modified routine equivalence
  75. C list. (WRB)
  76. C 891107 REVISION DATE from Version 3.2
  77. C 891214 Prologue converted to Version 4.0 format. (BAB)
  78. C 900326 Removed duplicate information from DESCRIPTION section.
  79. C (WRB)
  80. C 920501 Reformatted the REFERENCES section. (WRB)
  81. C***END PROLOGUE CSICO
  82. INTEGER LDA,N,KPVT(*)
  83. COMPLEX A(LDA,*),Z(*)
  84. REAL RCOND
  85. C
  86. COMPLEX AK,AKM1,BK,BKM1,CDOTU,DENOM,EK,T
  87. REAL ANORM,S,SCASUM,YNORM
  88. INTEGER I,INFO,J,JM1,K,KP,KPS,KS
  89. COMPLEX ZDUM,ZDUM2,CSIGN1
  90. REAL CABS1
  91. CABS1(ZDUM) = ABS(REAL(ZDUM)) + ABS(AIMAG(ZDUM))
  92. CSIGN1(ZDUM,ZDUM2) = CABS1(ZDUM)*(ZDUM2/CABS1(ZDUM2))
  93. C
  94. C FIND NORM OF A USING ONLY UPPER HALF
  95. C
  96. C***FIRST EXECUTABLE STATEMENT CSICO
  97. DO 30 J = 1, N
  98. Z(J) = CMPLX(SCASUM(J,A(1,J),1),0.0E0)
  99. JM1 = J - 1
  100. IF (JM1 .LT. 1) GO TO 20
  101. DO 10 I = 1, JM1
  102. Z(I) = CMPLX(REAL(Z(I))+CABS1(A(I,J)),0.0E0)
  103. 10 CONTINUE
  104. 20 CONTINUE
  105. 30 CONTINUE
  106. ANORM = 0.0E0
  107. DO 40 J = 1, N
  108. ANORM = MAX(ANORM,REAL(Z(J)))
  109. 40 CONTINUE
  110. C
  111. C FACTOR
  112. C
  113. CALL CSIFA(A,LDA,N,KPVT,INFO)
  114. C
  115. C RCOND = 1/(NORM(A)*(ESTIMATE OF NORM(INVERSE(A)))) .
  116. C ESTIMATE = NORM(Z)/NORM(Y) WHERE A*Z = Y AND A*Y = E .
  117. C THE COMPONENTS OF E ARE CHOSEN TO CAUSE MAXIMUM LOCAL
  118. C GROWTH IN THE ELEMENTS OF W WHERE U*D*W = E .
  119. C THE VECTORS ARE FREQUENTLY RESCALED TO AVOID OVERFLOW.
  120. C
  121. C SOLVE U*D*W = E
  122. C
  123. EK = (1.0E0,0.0E0)
  124. DO 50 J = 1, N
  125. Z(J) = (0.0E0,0.0E0)
  126. 50 CONTINUE
  127. K = N
  128. 60 IF (K .EQ. 0) GO TO 120
  129. KS = 1
  130. IF (KPVT(K) .LT. 0) KS = 2
  131. KP = ABS(KPVT(K))
  132. KPS = K + 1 - KS
  133. IF (KP .EQ. KPS) GO TO 70
  134. T = Z(KPS)
  135. Z(KPS) = Z(KP)
  136. Z(KP) = T
  137. 70 CONTINUE
  138. IF (CABS1(Z(K)) .NE. 0.0E0) EK = CSIGN1(EK,Z(K))
  139. Z(K) = Z(K) + EK
  140. CALL CAXPY(K-KS,Z(K),A(1,K),1,Z(1),1)
  141. IF (KS .EQ. 1) GO TO 80
  142. IF (CABS1(Z(K-1)) .NE. 0.0E0) EK = CSIGN1(EK,Z(K-1))
  143. Z(K-1) = Z(K-1) + EK
  144. CALL CAXPY(K-KS,Z(K-1),A(1,K-1),1,Z(1),1)
  145. 80 CONTINUE
  146. IF (KS .EQ. 2) GO TO 100
  147. IF (CABS1(Z(K)) .LE. CABS1(A(K,K))) GO TO 90
  148. S = CABS1(A(K,K))/CABS1(Z(K))
  149. CALL CSSCAL(N,S,Z,1)
  150. EK = CMPLX(S,0.0E0)*EK
  151. 90 CONTINUE
  152. IF (CABS1(A(K,K)) .NE. 0.0E0) Z(K) = Z(K)/A(K,K)
  153. IF (CABS1(A(K,K)) .EQ. 0.0E0) Z(K) = (1.0E0,0.0E0)
  154. GO TO 110
  155. 100 CONTINUE
  156. AK = A(K,K)/A(K-1,K)
  157. AKM1 = A(K-1,K-1)/A(K-1,K)
  158. BK = Z(K)/A(K-1,K)
  159. BKM1 = Z(K-1)/A(K-1,K)
  160. DENOM = AK*AKM1 - 1.0E0
  161. Z(K) = (AKM1*BK - BKM1)/DENOM
  162. Z(K-1) = (AK*BKM1 - BK)/DENOM
  163. 110 CONTINUE
  164. K = K - KS
  165. GO TO 60
  166. 120 CONTINUE
  167. S = 1.0E0/SCASUM(N,Z,1)
  168. CALL CSSCAL(N,S,Z,1)
  169. C
  170. C SOLVE TRANS(U)*Y = W
  171. C
  172. K = 1
  173. 130 IF (K .GT. N) GO TO 160
  174. KS = 1
  175. IF (KPVT(K) .LT. 0) KS = 2
  176. IF (K .EQ. 1) GO TO 150
  177. Z(K) = Z(K) + CDOTU(K-1,A(1,K),1,Z(1),1)
  178. IF (KS .EQ. 2)
  179. 1 Z(K+1) = Z(K+1) + CDOTU(K-1,A(1,K+1),1,Z(1),1)
  180. KP = ABS(KPVT(K))
  181. IF (KP .EQ. K) GO TO 140
  182. T = Z(K)
  183. Z(K) = Z(KP)
  184. Z(KP) = T
  185. 140 CONTINUE
  186. 150 CONTINUE
  187. K = K + KS
  188. GO TO 130
  189. 160 CONTINUE
  190. S = 1.0E0/SCASUM(N,Z,1)
  191. CALL CSSCAL(N,S,Z,1)
  192. C
  193. YNORM = 1.0E0
  194. C
  195. C SOLVE U*D*V = Y
  196. C
  197. K = N
  198. 170 IF (K .EQ. 0) GO TO 230
  199. KS = 1
  200. IF (KPVT(K) .LT. 0) KS = 2
  201. IF (K .EQ. KS) GO TO 190
  202. KP = ABS(KPVT(K))
  203. KPS = K + 1 - KS
  204. IF (KP .EQ. KPS) GO TO 180
  205. T = Z(KPS)
  206. Z(KPS) = Z(KP)
  207. Z(KP) = T
  208. 180 CONTINUE
  209. CALL CAXPY(K-KS,Z(K),A(1,K),1,Z(1),1)
  210. IF (KS .EQ. 2) CALL CAXPY(K-KS,Z(K-1),A(1,K-1),1,Z(1),1)
  211. 190 CONTINUE
  212. IF (KS .EQ. 2) GO TO 210
  213. IF (CABS1(Z(K)) .LE. CABS1(A(K,K))) GO TO 200
  214. S = CABS1(A(K,K))/CABS1(Z(K))
  215. CALL CSSCAL(N,S,Z,1)
  216. YNORM = S*YNORM
  217. 200 CONTINUE
  218. IF (CABS1(A(K,K)) .NE. 0.0E0) Z(K) = Z(K)/A(K,K)
  219. IF (CABS1(A(K,K)) .EQ. 0.0E0) Z(K) = (1.0E0,0.0E0)
  220. GO TO 220
  221. 210 CONTINUE
  222. AK = A(K,K)/A(K-1,K)
  223. AKM1 = A(K-1,K-1)/A(K-1,K)
  224. BK = Z(K)/A(K-1,K)
  225. BKM1 = Z(K-1)/A(K-1,K)
  226. DENOM = AK*AKM1 - 1.0E0
  227. Z(K) = (AKM1*BK - BKM1)/DENOM
  228. Z(K-1) = (AK*BKM1 - BK)/DENOM
  229. 220 CONTINUE
  230. K = K - KS
  231. GO TO 170
  232. 230 CONTINUE
  233. S = 1.0E0/SCASUM(N,Z,1)
  234. CALL CSSCAL(N,S,Z,1)
  235. YNORM = S*YNORM
  236. C
  237. C SOLVE TRANS(U)*Z = V
  238. C
  239. K = 1
  240. 240 IF (K .GT. N) GO TO 270
  241. KS = 1
  242. IF (KPVT(K) .LT. 0) KS = 2
  243. IF (K .EQ. 1) GO TO 260
  244. Z(K) = Z(K) + CDOTU(K-1,A(1,K),1,Z(1),1)
  245. IF (KS .EQ. 2)
  246. 1 Z(K+1) = Z(K+1) + CDOTU(K-1,A(1,K+1),1,Z(1),1)
  247. KP = ABS(KPVT(K))
  248. IF (KP .EQ. K) GO TO 250
  249. T = Z(K)
  250. Z(K) = Z(KP)
  251. Z(KP) = T
  252. 250 CONTINUE
  253. 260 CONTINUE
  254. K = K + KS
  255. GO TO 240
  256. 270 CONTINUE
  257. C MAKE ZNORM = 1.0
  258. S = 1.0E0/SCASUM(N,Z,1)
  259. CALL CSSCAL(N,S,Z,1)
  260. YNORM = S*YNORM
  261. C
  262. IF (ANORM .NE. 0.0E0) RCOND = YNORM/ANORM
  263. IF (ANORM .EQ. 0.0E0) RCOND = 0.0E0
  264. RETURN
  265. END