csisl.f 4.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188
  1. *DECK CSISL
  2. SUBROUTINE CSISL (A, LDA, N, KPVT, B)
  3. C***BEGIN PROLOGUE CSISL
  4. C***PURPOSE Solve a complex symmetric system using the factors obtained
  5. C from CSIFA.
  6. C***LIBRARY SLATEC (LINPACK)
  7. C***CATEGORY D2C1
  8. C***TYPE COMPLEX (SSISL-S, DSISL-D, CHISL-C, CSISL-C)
  9. C***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX, SOLVE, SYMMETRIC
  10. C***AUTHOR Bunch, J., (UCSD)
  11. C***DESCRIPTION
  12. C
  13. C CSISL solves the complex symmetric system
  14. C A * X = B
  15. C using the factors computed by CSIFA.
  16. C
  17. C On Entry
  18. C
  19. C A COMPLEX(LDA,N)
  20. C the output from CSIFA.
  21. C
  22. C LDA INTEGER
  23. C the leading dimension of the array A .
  24. C
  25. C N INTEGER
  26. C the order of the matrix A .
  27. C
  28. C KVPT INTEGER(N)
  29. C the pivot vector from CSIFA.
  30. C
  31. C B COMPLEX(N)
  32. C the right hand side vector.
  33. C
  34. C On Return
  35. C
  36. C B the solution vector X .
  37. C
  38. C Error Condition
  39. C
  40. C A division by zero may occur if CSICO has set RCOND .EQ. 0.0
  41. C or CSIFA has set INFO .NE. 0 .
  42. C
  43. C To compute INVERSE(A) * C where C is a matrix
  44. C with P columns
  45. C CALL CSIFA(A,LDA,N,KVPT,INFO)
  46. C If (INFO .NE. 0) GO TO ...
  47. C DO 10 J = 1, P
  48. C CALL CSISL(A,LDA,N,KVPT,C(1,j))
  49. C 10 CONTINUE
  50. C
  51. C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
  52. C Stewart, LINPACK Users' Guide, SIAM, 1979.
  53. C***ROUTINES CALLED CAXPY, CDOTU
  54. C***REVISION HISTORY (YYMMDD)
  55. C 780814 DATE WRITTEN
  56. C 890531 Changed all specific intrinsics to generic. (WRB)
  57. C 890831 Modified array declarations. (WRB)
  58. C 891107 Corrected category and modified routine equivalence
  59. C list. (WRB)
  60. C 891107 REVISION DATE from Version 3.2
  61. C 891214 Prologue converted to Version 4.0 format. (BAB)
  62. C 900326 Removed duplicate information from DESCRIPTION section.
  63. C (WRB)
  64. C 920501 Reformatted the REFERENCES section. (WRB)
  65. C***END PROLOGUE CSISL
  66. INTEGER LDA,N,KPVT(*)
  67. COMPLEX A(LDA,*),B(*)
  68. C
  69. COMPLEX AK,AKM1,BK,BKM1,CDOTU,DENOM,TEMP
  70. INTEGER K,KP
  71. C
  72. C LOOP BACKWARD APPLYING THE TRANSFORMATIONS AND
  73. C D INVERSE TO B.
  74. C
  75. C***FIRST EXECUTABLE STATEMENT CSISL
  76. K = N
  77. 10 IF (K .EQ. 0) GO TO 80
  78. IF (KPVT(K) .LT. 0) GO TO 40
  79. C
  80. C 1 X 1 PIVOT BLOCK.
  81. C
  82. IF (K .EQ. 1) GO TO 30
  83. KP = KPVT(K)
  84. IF (KP .EQ. K) GO TO 20
  85. C
  86. C INTERCHANGE.
  87. C
  88. TEMP = B(K)
  89. B(K) = B(KP)
  90. B(KP) = TEMP
  91. 20 CONTINUE
  92. C
  93. C APPLY THE TRANSFORMATION.
  94. C
  95. CALL CAXPY(K-1,B(K),A(1,K),1,B(1),1)
  96. 30 CONTINUE
  97. C
  98. C APPLY D INVERSE.
  99. C
  100. B(K) = B(K)/A(K,K)
  101. K = K - 1
  102. GO TO 70
  103. 40 CONTINUE
  104. C
  105. C 2 X 2 PIVOT BLOCK.
  106. C
  107. IF (K .EQ. 2) GO TO 60
  108. KP = ABS(KPVT(K))
  109. IF (KP .EQ. K - 1) GO TO 50
  110. C
  111. C INTERCHANGE.
  112. C
  113. TEMP = B(K-1)
  114. B(K-1) = B(KP)
  115. B(KP) = TEMP
  116. 50 CONTINUE
  117. C
  118. C APPLY THE TRANSFORMATION.
  119. C
  120. CALL CAXPY(K-2,B(K),A(1,K),1,B(1),1)
  121. CALL CAXPY(K-2,B(K-1),A(1,K-1),1,B(1),1)
  122. 60 CONTINUE
  123. C
  124. C APPLY D INVERSE.
  125. C
  126. AK = A(K,K)/A(K-1,K)
  127. AKM1 = A(K-1,K-1)/A(K-1,K)
  128. BK = B(K)/A(K-1,K)
  129. BKM1 = B(K-1)/A(K-1,K)
  130. DENOM = AK*AKM1 - 1.0E0
  131. B(K) = (AKM1*BK - BKM1)/DENOM
  132. B(K-1) = (AK*BKM1 - BK)/DENOM
  133. K = K - 2
  134. 70 CONTINUE
  135. GO TO 10
  136. 80 CONTINUE
  137. C
  138. C LOOP FORWARD APPLYING THE TRANSFORMATIONS.
  139. C
  140. K = 1
  141. 90 IF (K .GT. N) GO TO 160
  142. IF (KPVT(K) .LT. 0) GO TO 120
  143. C
  144. C 1 X 1 PIVOT BLOCK.
  145. C
  146. IF (K .EQ. 1) GO TO 110
  147. C
  148. C APPLY THE TRANSFORMATION.
  149. C
  150. B(K) = B(K) + CDOTU(K-1,A(1,K),1,B(1),1)
  151. KP = KPVT(K)
  152. IF (KP .EQ. K) GO TO 100
  153. C
  154. C INTERCHANGE.
  155. C
  156. TEMP = B(K)
  157. B(K) = B(KP)
  158. B(KP) = TEMP
  159. 100 CONTINUE
  160. 110 CONTINUE
  161. K = K + 1
  162. GO TO 150
  163. 120 CONTINUE
  164. C
  165. C 2 X 2 PIVOT BLOCK.
  166. C
  167. IF (K .EQ. 1) GO TO 140
  168. C
  169. C APPLY THE TRANSFORMATION.
  170. C
  171. B(K) = B(K) + CDOTU(K-1,A(1,K),1,B(1),1)
  172. B(K+1) = B(K+1) + CDOTU(K-1,A(1,K+1),1,B(1),1)
  173. KP = ABS(KPVT(K))
  174. IF (KP .EQ. K) GO TO 130
  175. C
  176. C INTERCHANGE.
  177. C
  178. TEMP = B(K)
  179. B(K) = B(KP)
  180. B(KP) = TEMP
  181. 130 CONTINUE
  182. 140 CONTINUE
  183. K = K + 2
  184. 150 CONTINUE
  185. GO TO 90
  186. 160 CONTINUE
  187. RETURN
  188. END