cspco.f 9.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305
  1. *DECK CSPCO
  2. SUBROUTINE CSPCO (AP, N, KPVT, RCOND, Z)
  3. C***BEGIN PROLOGUE CSPCO
  4. C***PURPOSE Factor a complex symmetric matrix stored in packed form
  5. C by elimination with symmetric pivoting and estimate the
  6. C condition number of the matrix.
  7. C***LIBRARY SLATEC (LINPACK)
  8. C***CATEGORY D2C1
  9. C***TYPE COMPLEX (SSPCO-S, DSPCO-D, CHPCO-C, CSPCO-C)
  10. C***KEYWORDS CONDITION NUMBER, LINEAR ALGEBRA, LINPACK,
  11. C MATRIX FACTORIZATION, PACKED, SYMMETRIC
  12. C***AUTHOR Moler, C. B., (U. of New Mexico)
  13. C***DESCRIPTION
  14. C
  15. C CSPCO factors a complex symmetric matrix stored in packed
  16. C form by elimination with symmetric pivoting and estimates
  17. C the condition of the matrix.
  18. C
  19. C If RCOND is not needed, CSPFA is slightly faster.
  20. C To solve A*X = B , follow CSPCO by CSPSL.
  21. C To compute INVERSE(A)*C , follow CSPCO by CSPSL.
  22. C To compute INVERSE(A) , follow CSPCO by CSPDI.
  23. C To compute DETERMINANT(A) , follow CSPCO by CSPDI.
  24. C
  25. C On Entry
  26. C
  27. C AP COMPLEX (N*(N+1)/2)
  28. C the packed form of a symmetric matrix A . The
  29. C columns of the upper triangle are stored sequentially
  30. C in a one-dimensional array of length N*(N+1)/2 .
  31. C See comments below for details.
  32. C
  33. C N INTEGER
  34. C the order of the matrix A .
  35. C
  36. C On Return
  37. C
  38. C AP a block diagonal matrix and the multipliers which
  39. C were used to obtain it stored in packed form.
  40. C The factorization can be written A = U*D*TRANS(U)
  41. C where U is a product of permutation and unit
  42. C upper triangular matrices , TRANS(U) is the
  43. C transpose of U , and D is block diagonal
  44. C with 1 by 1 and 2 by 2 blocks.
  45. C
  46. C KVPT INTEGER(N)
  47. C an integer vector of pivot indices.
  48. C
  49. C RCOND REAL
  50. C an estimate of the reciprocal condition of A .
  51. C For the system A*X = B , relative perturbations
  52. C in A and B of size EPSILON may cause
  53. C relative perturbations in X of size EPSILON/RCOND .
  54. C If RCOND is so small that the logical expression
  55. C 1.0 + RCOND .EQ. 1.0
  56. C is true, then A may be singular to working
  57. C precision. In particular, RCOND is zero if
  58. C exact singularity is detected or the estimate
  59. C underflows.
  60. C
  61. C Z COMPLEX(N)
  62. C a work vector whose contents are usually unimportant.
  63. C If A is close to a singular matrix, then Z is
  64. C an approximate null vector in the sense that
  65. C NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .
  66. C
  67. C Packed Storage
  68. C
  69. C The following program segment will pack the upper
  70. C triangle of a symmetric matrix.
  71. C
  72. C K = 0
  73. C DO 20 J = 1, N
  74. C DO 10 I = 1, J
  75. C K = K + 1
  76. C AP(K) = A(I,J)
  77. C 10 CONTINUE
  78. C 20 CONTINUE
  79. C
  80. C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
  81. C Stewart, LINPACK Users' Guide, SIAM, 1979.
  82. C***ROUTINES CALLED CAXPY, CDOTU, CSPFA, CSSCAL, SCASUM
  83. C***REVISION HISTORY (YYMMDD)
  84. C 780814 DATE WRITTEN
  85. C 890531 Changed all specific intrinsics to generic. (WRB)
  86. C 890831 Modified array declarations. (WRB)
  87. C 891107 Corrected category and modified routine equivalence
  88. C list. (WRB)
  89. C 891107 REVISION DATE from Version 3.2
  90. C 891214 Prologue converted to Version 4.0 format. (BAB)
  91. C 900326 Removed duplicate information from DESCRIPTION section.
  92. C (WRB)
  93. C 920501 Reformatted the REFERENCES section. (WRB)
  94. C***END PROLOGUE CSPCO
  95. INTEGER N,KPVT(*)
  96. COMPLEX AP(*),Z(*)
  97. REAL RCOND
  98. C
  99. COMPLEX AK,AKM1,BK,BKM1,CDOTU,DENOM,EK,T
  100. REAL ANORM,S,SCASUM,YNORM
  101. INTEGER I,IJ,IK,IKM1,IKP1,INFO,J,JM1,J1
  102. INTEGER K,KK,KM1K,KM1KM1,KP,KPS,KS
  103. COMPLEX ZDUM,ZDUM2,CSIGN1
  104. REAL CABS1
  105. CABS1(ZDUM) = ABS(REAL(ZDUM)) + ABS(AIMAG(ZDUM))
  106. CSIGN1(ZDUM,ZDUM2) = CABS1(ZDUM)*(ZDUM2/CABS1(ZDUM2))
  107. C
  108. C FIND NORM OF A USING ONLY UPPER HALF
  109. C
  110. C***FIRST EXECUTABLE STATEMENT CSPCO
  111. J1 = 1
  112. DO 30 J = 1, N
  113. Z(J) = CMPLX(SCASUM(J,AP(J1),1),0.0E0)
  114. IJ = J1
  115. J1 = J1 + J
  116. JM1 = J - 1
  117. IF (JM1 .LT. 1) GO TO 20
  118. DO 10 I = 1, JM1
  119. Z(I) = CMPLX(REAL(Z(I))+CABS1(AP(IJ)),0.0E0)
  120. IJ = IJ + 1
  121. 10 CONTINUE
  122. 20 CONTINUE
  123. 30 CONTINUE
  124. ANORM = 0.0E0
  125. DO 40 J = 1, N
  126. ANORM = MAX(ANORM,REAL(Z(J)))
  127. 40 CONTINUE
  128. C
  129. C FACTOR
  130. C
  131. CALL CSPFA(AP,N,KPVT,INFO)
  132. C
  133. C RCOND = 1/(NORM(A)*(ESTIMATE OF NORM(INVERSE(A)))) .
  134. C ESTIMATE = NORM(Z)/NORM(Y) WHERE A*Z = Y AND A*Y = E .
  135. C THE COMPONENTS OF E ARE CHOSEN TO CAUSE MAXIMUM LOCAL
  136. C GROWTH IN THE ELEMENTS OF W WHERE U*D*W = E .
  137. C THE VECTORS ARE FREQUENTLY RESCALED TO AVOID OVERFLOW.
  138. C
  139. C SOLVE U*D*W = E
  140. C
  141. EK = (1.0E0,0.0E0)
  142. DO 50 J = 1, N
  143. Z(J) = (0.0E0,0.0E0)
  144. 50 CONTINUE
  145. K = N
  146. IK = (N*(N - 1))/2
  147. 60 IF (K .EQ. 0) GO TO 120
  148. KK = IK + K
  149. IKM1 = IK - (K - 1)
  150. KS = 1
  151. IF (KPVT(K) .LT. 0) KS = 2
  152. KP = ABS(KPVT(K))
  153. KPS = K + 1 - KS
  154. IF (KP .EQ. KPS) GO TO 70
  155. T = Z(KPS)
  156. Z(KPS) = Z(KP)
  157. Z(KP) = T
  158. 70 CONTINUE
  159. IF (CABS1(Z(K)) .NE. 0.0E0) EK = CSIGN1(EK,Z(K))
  160. Z(K) = Z(K) + EK
  161. CALL CAXPY(K-KS,Z(K),AP(IK+1),1,Z(1),1)
  162. IF (KS .EQ. 1) GO TO 80
  163. IF (CABS1(Z(K-1)) .NE. 0.0E0) EK = CSIGN1(EK,Z(K-1))
  164. Z(K-1) = Z(K-1) + EK
  165. CALL CAXPY(K-KS,Z(K-1),AP(IKM1+1),1,Z(1),1)
  166. 80 CONTINUE
  167. IF (KS .EQ. 2) GO TO 100
  168. IF (CABS1(Z(K)) .LE. CABS1(AP(KK))) GO TO 90
  169. S = CABS1(AP(KK))/CABS1(Z(K))
  170. CALL CSSCAL(N,S,Z,1)
  171. EK = CMPLX(S,0.0E0)*EK
  172. 90 CONTINUE
  173. IF (CABS1(AP(KK)) .NE. 0.0E0) Z(K) = Z(K)/AP(KK)
  174. IF (CABS1(AP(KK)) .EQ. 0.0E0) Z(K) = (1.0E0,0.0E0)
  175. GO TO 110
  176. 100 CONTINUE
  177. KM1K = IK + K - 1
  178. KM1KM1 = IKM1 + K - 1
  179. AK = AP(KK)/AP(KM1K)
  180. AKM1 = AP(KM1KM1)/AP(KM1K)
  181. BK = Z(K)/AP(KM1K)
  182. BKM1 = Z(K-1)/AP(KM1K)
  183. DENOM = AK*AKM1 - 1.0E0
  184. Z(K) = (AKM1*BK - BKM1)/DENOM
  185. Z(K-1) = (AK*BKM1 - BK)/DENOM
  186. 110 CONTINUE
  187. K = K - KS
  188. IK = IK - K
  189. IF (KS .EQ. 2) IK = IK - (K + 1)
  190. GO TO 60
  191. 120 CONTINUE
  192. S = 1.0E0/SCASUM(N,Z,1)
  193. CALL CSSCAL(N,S,Z,1)
  194. C
  195. C SOLVE TRANS(U)*Y = W
  196. C
  197. K = 1
  198. IK = 0
  199. 130 IF (K .GT. N) GO TO 160
  200. KS = 1
  201. IF (KPVT(K) .LT. 0) KS = 2
  202. IF (K .EQ. 1) GO TO 150
  203. Z(K) = Z(K) + CDOTU(K-1,AP(IK+1),1,Z(1),1)
  204. IKP1 = IK + K
  205. IF (KS .EQ. 2)
  206. 1 Z(K+1) = Z(K+1) + CDOTU(K-1,AP(IKP1+1),1,Z(1),1)
  207. KP = ABS(KPVT(K))
  208. IF (KP .EQ. K) GO TO 140
  209. T = Z(K)
  210. Z(K) = Z(KP)
  211. Z(KP) = T
  212. 140 CONTINUE
  213. 150 CONTINUE
  214. IK = IK + K
  215. IF (KS .EQ. 2) IK = IK + (K + 1)
  216. K = K + KS
  217. GO TO 130
  218. 160 CONTINUE
  219. S = 1.0E0/SCASUM(N,Z,1)
  220. CALL CSSCAL(N,S,Z,1)
  221. C
  222. YNORM = 1.0E0
  223. C
  224. C SOLVE U*D*V = Y
  225. C
  226. K = N
  227. IK = N*(N - 1)/2
  228. 170 IF (K .EQ. 0) GO TO 230
  229. KK = IK + K
  230. IKM1 = IK - (K - 1)
  231. KS = 1
  232. IF (KPVT(K) .LT. 0) KS = 2
  233. IF (K .EQ. KS) GO TO 190
  234. KP = ABS(KPVT(K))
  235. KPS = K + 1 - KS
  236. IF (KP .EQ. KPS) GO TO 180
  237. T = Z(KPS)
  238. Z(KPS) = Z(KP)
  239. Z(KP) = T
  240. 180 CONTINUE
  241. CALL CAXPY(K-KS,Z(K),AP(IK+1),1,Z(1),1)
  242. IF (KS .EQ. 2) CALL CAXPY(K-KS,Z(K-1),AP(IKM1+1),1,Z(1),1)
  243. 190 CONTINUE
  244. IF (KS .EQ. 2) GO TO 210
  245. IF (CABS1(Z(K)) .LE. CABS1(AP(KK))) GO TO 200
  246. S = CABS1(AP(KK))/CABS1(Z(K))
  247. CALL CSSCAL(N,S,Z,1)
  248. YNORM = S*YNORM
  249. 200 CONTINUE
  250. IF (CABS1(AP(KK)) .NE. 0.0E0) Z(K) = Z(K)/AP(KK)
  251. IF (CABS1(AP(KK)) .EQ. 0.0E0) Z(K) = (1.0E0,0.0E0)
  252. GO TO 220
  253. 210 CONTINUE
  254. KM1K = IK + K - 1
  255. KM1KM1 = IKM1 + K - 1
  256. AK = AP(KK)/AP(KM1K)
  257. AKM1 = AP(KM1KM1)/AP(KM1K)
  258. BK = Z(K)/AP(KM1K)
  259. BKM1 = Z(K-1)/AP(KM1K)
  260. DENOM = AK*AKM1 - 1.0E0
  261. Z(K) = (AKM1*BK - BKM1)/DENOM
  262. Z(K-1) = (AK*BKM1 - BK)/DENOM
  263. 220 CONTINUE
  264. K = K - KS
  265. IK = IK - K
  266. IF (KS .EQ. 2) IK = IK - (K + 1)
  267. GO TO 170
  268. 230 CONTINUE
  269. S = 1.0E0/SCASUM(N,Z,1)
  270. CALL CSSCAL(N,S,Z,1)
  271. YNORM = S*YNORM
  272. C
  273. C SOLVE TRANS(U)*Z = V
  274. C
  275. K = 1
  276. IK = 0
  277. 240 IF (K .GT. N) GO TO 270
  278. KS = 1
  279. IF (KPVT(K) .LT. 0) KS = 2
  280. IF (K .EQ. 1) GO TO 260
  281. Z(K) = Z(K) + CDOTU(K-1,AP(IK+1),1,Z(1),1)
  282. IKP1 = IK + K
  283. IF (KS .EQ. 2)
  284. 1 Z(K+1) = Z(K+1) + CDOTU(K-1,AP(IKP1+1),1,Z(1),1)
  285. KP = ABS(KPVT(K))
  286. IF (KP .EQ. K) GO TO 250
  287. T = Z(K)
  288. Z(K) = Z(KP)
  289. Z(KP) = T
  290. 250 CONTINUE
  291. 260 CONTINUE
  292. IK = IK + K
  293. IF (KS .EQ. 2) IK = IK + (K + 1)
  294. K = K + KS
  295. GO TO 240
  296. 270 CONTINUE
  297. C MAKE ZNORM = 1.0
  298. S = 1.0E0/SCASUM(N,Z,1)
  299. CALL CSSCAL(N,S,Z,1)
  300. YNORM = S*YNORM
  301. C
  302. IF (ANORM .NE. 0.0E0) RCOND = YNORM/ANORM
  303. IF (ANORM .EQ. 0.0E0) RCOND = 0.0E0
  304. RETURN
  305. END