123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238 |
- *DECK CSPDI
- SUBROUTINE CSPDI (AP, N, KPVT, DET, WORK, JOB)
- C***BEGIN PROLOGUE CSPDI
- C***PURPOSE Compute the determinant and inverse of a complex symmetric
- C matrix stored in packed form using the factors from CSPFA.
- C***LIBRARY SLATEC (LINPACK)
- C***CATEGORY D2C1, D3C1
- C***TYPE COMPLEX (SSPDI-S, DSPDI-D, CHPDI-C, CSPDI-C)
- C***KEYWORDS DETERMINANT, INVERSE, LINEAR ALGEBRA, LINPACK, MATRIX,
- C PACKED, SYMMETRIC
- C***AUTHOR Bunch, J., (UCSD)
- C***DESCRIPTION
- C
- C CSPDI computes the determinant and inverse
- C of a complex symmetric matrix using the factors from CSPFA,
- C where the matrix is stored in packed form.
- C
- C On Entry
- C
- C AP COMPLEX (N*(N+1)/2)
- C the output from CSPFA.
- C
- C N INTEGER
- C the order of the matrix A .
- C
- C KVPT INTEGER(N)
- C the pivot vector from CSPFA.
- C
- C WORK COMPLEX(N)
- C work vector. Contents ignored.
- C
- C JOB INTEGER
- C JOB has the decimal expansion AB where
- C if B .NE. 0, the inverse is computed,
- C if A .NE. 0, the determinant is computed.
- C
- C For example, JOB = 11 gives both.
- C
- C On Return
- C
- C Variables not requested by JOB are not used.
- C
- C AP contains the upper triangle of the inverse of
- C the original matrix, stored in packed form.
- C The columns of the upper triangle are stored
- C sequentially in a one-dimensional array.
- C
- C DET COMPLEX(2)
- C determinant of original matrix.
- C Determinant = DET(1) * 10.0**DET(2)
- C with 1.0 .LE. ABS(DET(1)) .LT. 10.0
- C or DET(1) = 0.0.
- C
- C Error Condition
- C
- C A division by zero will occur if the inverse is requested
- C and CSPCO has set RCOND .EQ. 0.0
- C or CSPFA has set INFO .NE. 0 .
- C
- C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
- C Stewart, LINPACK Users' Guide, SIAM, 1979.
- C***ROUTINES CALLED CAXPY, CCOPY, CDOTU, CSWAP
- C***REVISION HISTORY (YYMMDD)
- C 780814 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890831 Modified array declarations. (WRB)
- C 891107 Corrected category and modified routine equivalence
- C list. (WRB)
- C 891107 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 900326 Removed duplicate information from DESCRIPTION section.
- C (WRB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE CSPDI
- INTEGER N,JOB
- COMPLEX AP(*),WORK(*),DET(2)
- INTEGER KPVT(*)
- C
- COMPLEX AK,AKKP1,AKP1,CDOTU,D,T,TEMP
- REAL TEN
- INTEGER IJ,IK,IKP1,IKS,J,JB,JK,JKP1
- INTEGER K,KK,KKP1,KM1,KS,KSJ,KSKP1,KSTEP
- LOGICAL NOINV,NODET
- COMPLEX ZDUM
- REAL CABS1
- CABS1(ZDUM) = ABS(REAL(ZDUM)) + ABS(AIMAG(ZDUM))
- C
- C***FIRST EXECUTABLE STATEMENT CSPDI
- NOINV = MOD(JOB,10) .EQ. 0
- NODET = MOD(JOB,100)/10 .EQ. 0
- C
- IF (NODET) GO TO 110
- DET(1) = (1.0E0,0.0E0)
- DET(2) = (0.0E0,0.0E0)
- TEN = 10.0E0
- T = (0.0E0,0.0E0)
- IK = 0
- DO 100 K = 1, N
- KK = IK + K
- D = AP(KK)
- C
- C CHECK IF 1 BY 1
- C
- IF (KPVT(K) .GT. 0) GO TO 30
- C
- C 2 BY 2 BLOCK
- C USE DET (D T) = (D/T * C - T) * T
- C (T C)
- C TO AVOID UNDERFLOW/OVERFLOW TROUBLES.
- C TAKE TWO PASSES THROUGH SCALING. USE T FOR FLAG.
- C
- IF (CABS1(T) .NE. 0.0E0) GO TO 10
- IKP1 = IK + K
- KKP1 = IKP1 + K
- T = AP(KKP1)
- D = (D/T)*AP(KKP1+1) - T
- GO TO 20
- 10 CONTINUE
- D = T
- T = (0.0E0,0.0E0)
- 20 CONTINUE
- 30 CONTINUE
- C
- IF (NODET) GO TO 90
- DET(1) = D*DET(1)
- IF (CABS1(DET(1)) .EQ. 0.0E0) GO TO 80
- 40 IF (CABS1(DET(1)) .GE. 1.0E0) GO TO 50
- DET(1) = CMPLX(TEN,0.0E0)*DET(1)
- DET(2) = DET(2) - (1.0E0,0.0E0)
- GO TO 40
- 50 CONTINUE
- 60 IF (CABS1(DET(1)) .LT. TEN) GO TO 70
- DET(1) = DET(1)/CMPLX(TEN,0.0E0)
- DET(2) = DET(2) + (1.0E0,0.0E0)
- GO TO 60
- 70 CONTINUE
- 80 CONTINUE
- 90 CONTINUE
- IK = IK + K
- 100 CONTINUE
- 110 CONTINUE
- C
- C COMPUTE INVERSE(A)
- C
- IF (NOINV) GO TO 240
- K = 1
- IK = 0
- 120 IF (K .GT. N) GO TO 230
- KM1 = K - 1
- KK = IK + K
- IKP1 = IK + K
- IF (KPVT(K) .LT. 0) GO TO 150
- C
- C 1 BY 1
- C
- AP(KK) = (1.0E0,0.0E0)/AP(KK)
- IF (KM1 .LT. 1) GO TO 140
- CALL CCOPY(KM1,AP(IK+1),1,WORK,1)
- IJ = 0
- DO 130 J = 1, KM1
- JK = IK + J
- AP(JK) = CDOTU(J,AP(IJ+1),1,WORK,1)
- CALL CAXPY(J-1,WORK(J),AP(IJ+1),1,AP(IK+1),1)
- IJ = IJ + J
- 130 CONTINUE
- AP(KK) = AP(KK) + CDOTU(KM1,WORK,1,AP(IK+1),1)
- 140 CONTINUE
- KSTEP = 1
- GO TO 190
- 150 CONTINUE
- C
- C 2 BY 2
- C
- KKP1 = IKP1 + K
- T = AP(KKP1)
- AK = AP(KK)/T
- AKP1 = AP(KKP1+1)/T
- AKKP1 = AP(KKP1)/T
- D = T*(AK*AKP1 - (1.0E0,0.0E0))
- AP(KK) = AKP1/D
- AP(KKP1+1) = AK/D
- AP(KKP1) = -AKKP1/D
- IF (KM1 .LT. 1) GO TO 180
- CALL CCOPY(KM1,AP(IKP1+1),1,WORK,1)
- IJ = 0
- DO 160 J = 1, KM1
- JKP1 = IKP1 + J
- AP(JKP1) = CDOTU(J,AP(IJ+1),1,WORK,1)
- CALL CAXPY(J-1,WORK(J),AP(IJ+1),1,AP(IKP1+1),1)
- IJ = IJ + J
- 160 CONTINUE
- AP(KKP1+1) = AP(KKP1+1)
- 1 + CDOTU(KM1,WORK,1,AP(IKP1+1),1)
- AP(KKP1) = AP(KKP1)
- 1 + CDOTU(KM1,AP(IK+1),1,AP(IKP1+1),1)
- CALL CCOPY(KM1,AP(IK+1),1,WORK,1)
- IJ = 0
- DO 170 J = 1, KM1
- JK = IK + J
- AP(JK) = CDOTU(J,AP(IJ+1),1,WORK,1)
- CALL CAXPY(J-1,WORK(J),AP(IJ+1),1,AP(IK+1),1)
- IJ = IJ + J
- 170 CONTINUE
- AP(KK) = AP(KK) + CDOTU(KM1,WORK,1,AP(IK+1),1)
- 180 CONTINUE
- KSTEP = 2
- 190 CONTINUE
- C
- C SWAP
- C
- KS = ABS(KPVT(K))
- IF (KS .EQ. K) GO TO 220
- IKS = (KS*(KS - 1))/2
- CALL CSWAP(KS,AP(IKS+1),1,AP(IK+1),1)
- KSJ = IK + KS
- DO 200 JB = KS, K
- J = K + KS - JB
- JK = IK + J
- TEMP = AP(JK)
- AP(JK) = AP(KSJ)
- AP(KSJ) = TEMP
- KSJ = KSJ - (J - 1)
- 200 CONTINUE
- IF (KSTEP .EQ. 1) GO TO 210
- KSKP1 = IKP1 + KS
- TEMP = AP(KSKP1)
- AP(KSKP1) = AP(KKP1)
- AP(KKP1) = TEMP
- 210 CONTINUE
- 220 CONTINUE
- IK = IK + K
- IF (KSTEP .EQ. 2) IK = IK + K + 1
- K = K + KSTEP
- GO TO 120
- 230 CONTINUE
- 240 CONTINUE
- RETURN
- END
|