cspsl.f 5.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197
  1. *DECK CSPSL
  2. SUBROUTINE CSPSL (AP, N, KPVT, B)
  3. C***BEGIN PROLOGUE CSPSL
  4. C***PURPOSE Solve a complex symmetric system using the factors obtained
  5. C from CSPFA.
  6. C***LIBRARY SLATEC (LINPACK)
  7. C***CATEGORY D2C1
  8. C***TYPE COMPLEX (SSPSL-S, DSPSL-D, CHPSL-C, CSPSL-C)
  9. C***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX, PACKED, SOLVE, SYMMETRIC
  10. C***AUTHOR Bunch, J., (UCSD)
  11. C***DESCRIPTION
  12. C
  13. C CSISL solves the complex symmetric system
  14. C A * X = B
  15. C using the factors computed by CSPFA.
  16. C
  17. C On Entry
  18. C
  19. C AP COMPLEX(N*(N+1)/2)
  20. C the output from CSPFA.
  21. C
  22. C N INTEGER
  23. C the order of the matrix A .
  24. C
  25. C KVPT INTEGER(N)
  26. C the pivot vector from CSPFA.
  27. C
  28. C B COMPLEX(N)
  29. C the right hand side vector.
  30. C
  31. C On Return
  32. C
  33. C B the solution vector X .
  34. C
  35. C Error Condition
  36. C
  37. C A division by zero may occur if CSPCO has set RCOND .EQ. 0.0
  38. C or CSPFA has set INFO .NE. 0 .
  39. C
  40. C To compute INVERSE(A) * C where C is a matrix
  41. C with P columns
  42. C CALL CSPFA(AP,N,KVPT,INFO)
  43. C IF (INFO .NE. 0) GO TO ...
  44. C DO 10 J = 1, P
  45. C CALL CSPSL(AP,N,KVPT,C(1,J))
  46. C 10 CONTINUE
  47. C
  48. C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
  49. C Stewart, LINPACK Users' Guide, SIAM, 1979.
  50. C***ROUTINES CALLED CAXPY, CDOTU
  51. C***REVISION HISTORY (YYMMDD)
  52. C 780814 DATE WRITTEN
  53. C 890531 Changed all specific intrinsics to generic. (WRB)
  54. C 890831 Modified array declarations. (WRB)
  55. C 891107 Corrected category and modified routine equivalence
  56. C list. (WRB)
  57. C 891107 REVISION DATE from Version 3.2
  58. C 891214 Prologue converted to Version 4.0 format. (BAB)
  59. C 900326 Removed duplicate information from DESCRIPTION section.
  60. C (WRB)
  61. C 920501 Reformatted the REFERENCES section. (WRB)
  62. C***END PROLOGUE CSPSL
  63. INTEGER N,KPVT(*)
  64. COMPLEX AP(*),B(*)
  65. C
  66. COMPLEX AK,AKM1,BK,BKM1,CDOTU,DENOM,TEMP
  67. INTEGER IK,IKM1,IKP1,K,KK,KM1K,KM1KM1,KP
  68. C
  69. C LOOP BACKWARD APPLYING THE TRANSFORMATIONS AND
  70. C D INVERSE TO B.
  71. C
  72. C***FIRST EXECUTABLE STATEMENT CSPSL
  73. K = N
  74. IK = (N*(N - 1))/2
  75. 10 IF (K .EQ. 0) GO TO 80
  76. KK = IK + K
  77. IF (KPVT(K) .LT. 0) GO TO 40
  78. C
  79. C 1 X 1 PIVOT BLOCK.
  80. C
  81. IF (K .EQ. 1) GO TO 30
  82. KP = KPVT(K)
  83. IF (KP .EQ. K) GO TO 20
  84. C
  85. C INTERCHANGE.
  86. C
  87. TEMP = B(K)
  88. B(K) = B(KP)
  89. B(KP) = TEMP
  90. 20 CONTINUE
  91. C
  92. C APPLY THE TRANSFORMATION.
  93. C
  94. CALL CAXPY(K-1,B(K),AP(IK+1),1,B(1),1)
  95. 30 CONTINUE
  96. C
  97. C APPLY D INVERSE.
  98. C
  99. B(K) = B(K)/AP(KK)
  100. K = K - 1
  101. IK = IK - K
  102. GO TO 70
  103. 40 CONTINUE
  104. C
  105. C 2 X 2 PIVOT BLOCK.
  106. C
  107. IKM1 = IK - (K - 1)
  108. IF (K .EQ. 2) GO TO 60
  109. KP = ABS(KPVT(K))
  110. IF (KP .EQ. K - 1) GO TO 50
  111. C
  112. C INTERCHANGE.
  113. C
  114. TEMP = B(K-1)
  115. B(K-1) = B(KP)
  116. B(KP) = TEMP
  117. 50 CONTINUE
  118. C
  119. C APPLY THE TRANSFORMATION.
  120. C
  121. CALL CAXPY(K-2,B(K),AP(IK+1),1,B(1),1)
  122. CALL CAXPY(K-2,B(K-1),AP(IKM1+1),1,B(1),1)
  123. 60 CONTINUE
  124. C
  125. C APPLY D INVERSE.
  126. C
  127. KM1K = IK + K - 1
  128. KK = IK + K
  129. AK = AP(KK)/AP(KM1K)
  130. KM1KM1 = IKM1 + K - 1
  131. AKM1 = AP(KM1KM1)/AP(KM1K)
  132. BK = B(K)/AP(KM1K)
  133. BKM1 = B(K-1)/AP(KM1K)
  134. DENOM = AK*AKM1 - 1.0E0
  135. B(K) = (AKM1*BK - BKM1)/DENOM
  136. B(K-1) = (AK*BKM1 - BK)/DENOM
  137. K = K - 2
  138. IK = IK - (K + 1) - K
  139. 70 CONTINUE
  140. GO TO 10
  141. 80 CONTINUE
  142. C
  143. C LOOP FORWARD APPLYING THE TRANSFORMATIONS.
  144. C
  145. K = 1
  146. IK = 0
  147. 90 IF (K .GT. N) GO TO 160
  148. IF (KPVT(K) .LT. 0) GO TO 120
  149. C
  150. C 1 X 1 PIVOT BLOCK.
  151. C
  152. IF (K .EQ. 1) GO TO 110
  153. C
  154. C APPLY THE TRANSFORMATION.
  155. C
  156. B(K) = B(K) + CDOTU(K-1,AP(IK+1),1,B(1),1)
  157. KP = KPVT(K)
  158. IF (KP .EQ. K) GO TO 100
  159. C
  160. C INTERCHANGE.
  161. C
  162. TEMP = B(K)
  163. B(K) = B(KP)
  164. B(KP) = TEMP
  165. 100 CONTINUE
  166. 110 CONTINUE
  167. IK = IK + K
  168. K = K + 1
  169. GO TO 150
  170. 120 CONTINUE
  171. C
  172. C 2 X 2 PIVOT BLOCK.
  173. C
  174. IF (K .EQ. 1) GO TO 140
  175. C
  176. C APPLY THE TRANSFORMATION.
  177. C
  178. B(K) = B(K) + CDOTU(K-1,AP(IK+1),1,B(1),1)
  179. IKP1 = IK + K
  180. B(K+1) = B(K+1) + CDOTU(K-1,AP(IKP1+1),1,B(1),1)
  181. KP = ABS(KPVT(K))
  182. IF (KP .EQ. K) GO TO 130
  183. C
  184. C INTERCHANGE.
  185. C
  186. TEMP = B(K)
  187. B(K) = B(KP)
  188. B(KP) = TEMP
  189. 130 CONTINUE
  190. 140 CONTINUE
  191. IK = IK + K + K + 1
  192. K = K + 2
  193. 150 CONTINUE
  194. GO TO 90
  195. 160 CONTINUE
  196. RETURN
  197. END