123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197 |
- *DECK CSPSL
- SUBROUTINE CSPSL (AP, N, KPVT, B)
- C***BEGIN PROLOGUE CSPSL
- C***PURPOSE Solve a complex symmetric system using the factors obtained
- C from CSPFA.
- C***LIBRARY SLATEC (LINPACK)
- C***CATEGORY D2C1
- C***TYPE COMPLEX (SSPSL-S, DSPSL-D, CHPSL-C, CSPSL-C)
- C***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX, PACKED, SOLVE, SYMMETRIC
- C***AUTHOR Bunch, J., (UCSD)
- C***DESCRIPTION
- C
- C CSISL solves the complex symmetric system
- C A * X = B
- C using the factors computed by CSPFA.
- C
- C On Entry
- C
- C AP COMPLEX(N*(N+1)/2)
- C the output from CSPFA.
- C
- C N INTEGER
- C the order of the matrix A .
- C
- C KVPT INTEGER(N)
- C the pivot vector from CSPFA.
- C
- C B COMPLEX(N)
- C the right hand side vector.
- C
- C On Return
- C
- C B the solution vector X .
- C
- C Error Condition
- C
- C A division by zero may occur if CSPCO has set RCOND .EQ. 0.0
- C or CSPFA has set INFO .NE. 0 .
- C
- C To compute INVERSE(A) * C where C is a matrix
- C with P columns
- C CALL CSPFA(AP,N,KVPT,INFO)
- C IF (INFO .NE. 0) GO TO ...
- C DO 10 J = 1, P
- C CALL CSPSL(AP,N,KVPT,C(1,J))
- C 10 CONTINUE
- C
- C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
- C Stewart, LINPACK Users' Guide, SIAM, 1979.
- C***ROUTINES CALLED CAXPY, CDOTU
- C***REVISION HISTORY (YYMMDD)
- C 780814 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890831 Modified array declarations. (WRB)
- C 891107 Corrected category and modified routine equivalence
- C list. (WRB)
- C 891107 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 900326 Removed duplicate information from DESCRIPTION section.
- C (WRB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE CSPSL
- INTEGER N,KPVT(*)
- COMPLEX AP(*),B(*)
- C
- COMPLEX AK,AKM1,BK,BKM1,CDOTU,DENOM,TEMP
- INTEGER IK,IKM1,IKP1,K,KK,KM1K,KM1KM1,KP
- C
- C LOOP BACKWARD APPLYING THE TRANSFORMATIONS AND
- C D INVERSE TO B.
- C
- C***FIRST EXECUTABLE STATEMENT CSPSL
- K = N
- IK = (N*(N - 1))/2
- 10 IF (K .EQ. 0) GO TO 80
- KK = IK + K
- IF (KPVT(K) .LT. 0) GO TO 40
- C
- C 1 X 1 PIVOT BLOCK.
- C
- IF (K .EQ. 1) GO TO 30
- KP = KPVT(K)
- IF (KP .EQ. K) GO TO 20
- C
- C INTERCHANGE.
- C
- TEMP = B(K)
- B(K) = B(KP)
- B(KP) = TEMP
- 20 CONTINUE
- C
- C APPLY THE TRANSFORMATION.
- C
- CALL CAXPY(K-1,B(K),AP(IK+1),1,B(1),1)
- 30 CONTINUE
- C
- C APPLY D INVERSE.
- C
- B(K) = B(K)/AP(KK)
- K = K - 1
- IK = IK - K
- GO TO 70
- 40 CONTINUE
- C
- C 2 X 2 PIVOT BLOCK.
- C
- IKM1 = IK - (K - 1)
- IF (K .EQ. 2) GO TO 60
- KP = ABS(KPVT(K))
- IF (KP .EQ. K - 1) GO TO 50
- C
- C INTERCHANGE.
- C
- TEMP = B(K-1)
- B(K-1) = B(KP)
- B(KP) = TEMP
- 50 CONTINUE
- C
- C APPLY THE TRANSFORMATION.
- C
- CALL CAXPY(K-2,B(K),AP(IK+1),1,B(1),1)
- CALL CAXPY(K-2,B(K-1),AP(IKM1+1),1,B(1),1)
- 60 CONTINUE
- C
- C APPLY D INVERSE.
- C
- KM1K = IK + K - 1
- KK = IK + K
- AK = AP(KK)/AP(KM1K)
- KM1KM1 = IKM1 + K - 1
- AKM1 = AP(KM1KM1)/AP(KM1K)
- BK = B(K)/AP(KM1K)
- BKM1 = B(K-1)/AP(KM1K)
- DENOM = AK*AKM1 - 1.0E0
- B(K) = (AKM1*BK - BKM1)/DENOM
- B(K-1) = (AK*BKM1 - BK)/DENOM
- K = K - 2
- IK = IK - (K + 1) - K
- 70 CONTINUE
- GO TO 10
- 80 CONTINUE
- C
- C LOOP FORWARD APPLYING THE TRANSFORMATIONS.
- C
- K = 1
- IK = 0
- 90 IF (K .GT. N) GO TO 160
- IF (KPVT(K) .LT. 0) GO TO 120
- C
- C 1 X 1 PIVOT BLOCK.
- C
- IF (K .EQ. 1) GO TO 110
- C
- C APPLY THE TRANSFORMATION.
- C
- B(K) = B(K) + CDOTU(K-1,AP(IK+1),1,B(1),1)
- KP = KPVT(K)
- IF (KP .EQ. K) GO TO 100
- C
- C INTERCHANGE.
- C
- TEMP = B(K)
- B(K) = B(KP)
- B(KP) = TEMP
- 100 CONTINUE
- 110 CONTINUE
- IK = IK + K
- K = K + 1
- GO TO 150
- 120 CONTINUE
- C
- C 2 X 2 PIVOT BLOCK.
- C
- IF (K .EQ. 1) GO TO 140
- C
- C APPLY THE TRANSFORMATION.
- C
- B(K) = B(K) + CDOTU(K-1,AP(IK+1),1,B(1),1)
- IKP1 = IK + K
- B(K+1) = B(K+1) + CDOTU(K-1,AP(IKP1+1),1,B(1),1)
- KP = ABS(KPVT(K))
- IF (KP .EQ. K) GO TO 130
- C
- C INTERCHANGE.
- C
- TEMP = B(K)
- B(K) = B(KP)
- B(KP) = TEMP
- 130 CONTINUE
- 140 CONTINUE
- IK = IK + K + K + 1
- K = K + 2
- 150 CONTINUE
- GO TO 90
- 160 CONTINUE
- RETURN
- END
|