csyr2k.f 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331
  1. *DECK CSYR2K
  2. SUBROUTINE CSYR2K (UPLO, TRANS, N, K, ALPHA, A, LDA, B, LDB, BETA,
  3. $ C, LDC)
  4. C***BEGIN PROLOGUE CSYR2K
  5. C***PURPOSE Perform symmetric rank 2k update of a complex symmetric
  6. C matrix.
  7. C***LIBRARY SLATEC (BLAS)
  8. C***CATEGORY D1B6
  9. C***TYPE COMPLEX (SSYR2-S, DSYR2-D, CSYR2-C, CSYR2K-C)
  10. C***KEYWORDS LEVEL 3 BLAS, LINEAR ALGEBRA
  11. C***AUTHOR Dongarra, J., (ANL)
  12. C Duff, I., (AERE)
  13. C Du Croz, J., (NAG)
  14. C Hammarling, S. (NAG)
  15. C***DESCRIPTION
  16. C
  17. C CSYR2K performs one of the symmetric rank 2k operations
  18. C
  19. C C := alpha*A*B' + alpha*B*A' + beta*C,
  20. C
  21. C or
  22. C
  23. C C := alpha*A'*B + alpha*B'*A + beta*C,
  24. C
  25. C where alpha and beta are scalars, C is an n by n symmetric matrix
  26. C and A and B are n by k matrices in the first case and k by n
  27. C matrices in the second case.
  28. C
  29. C Parameters
  30. C ==========
  31. C
  32. C UPLO - CHARACTER*1.
  33. C On entry, UPLO specifies whether the upper or lower
  34. C triangular part of the array C is to be referenced as
  35. C follows:
  36. C
  37. C UPLO = 'U' or 'u' Only the upper triangular part of C
  38. C is to be referenced.
  39. C
  40. C UPLO = 'L' or 'l' Only the lower triangular part of C
  41. C is to be referenced.
  42. C
  43. C Unchanged on exit.
  44. C
  45. C TRANS - CHARACTER*1.
  46. C On entry, TRANS specifies the operation to be performed as
  47. C follows:
  48. C
  49. C TRANS = 'N' or 'n' C := alpha*A*B' + alpha*B*A' +
  50. C beta*C.
  51. C
  52. C TRANS = 'T' or 't' C := alpha*A'*B + alpha*B'*A +
  53. C beta*C.
  54. C
  55. C Unchanged on exit.
  56. C
  57. C N - INTEGER.
  58. C On entry, N specifies the order of the matrix C. N must be
  59. C at least zero.
  60. C Unchanged on exit.
  61. C
  62. C K - INTEGER.
  63. C On entry with TRANS = 'N' or 'n', K specifies the number
  64. C of columns of the matrices A and B, and on entry with
  65. C TRANS = 'T' or 't', K specifies the number of rows of the
  66. C matrices A and B. K must be at least zero.
  67. C Unchanged on exit.
  68. C
  69. C ALPHA - COMPLEX .
  70. C On entry, ALPHA specifies the scalar alpha.
  71. C Unchanged on exit.
  72. C
  73. C A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is
  74. C k when TRANS = 'N' or 'n', and is n otherwise.
  75. C Before entry with TRANS = 'N' or 'n', the leading n by k
  76. C part of the array A must contain the matrix A, otherwise
  77. C the leading k by n part of the array A must contain the
  78. C matrix A.
  79. C Unchanged on exit.
  80. C
  81. C LDA - INTEGER.
  82. C On entry, LDA specifies the first dimension of A as declared
  83. C in the calling (sub) program. When TRANS = 'N' or 'n'
  84. C then LDA must be at least max( 1, n ), otherwise LDA must
  85. C be at least max( 1, k ).
  86. C Unchanged on exit.
  87. C
  88. C B - COMPLEX array of DIMENSION ( LDB, kb ), where kb is
  89. C k when TRANS = 'N' or 'n', and is n otherwise.
  90. C Before entry with TRANS = 'N' or 'n', the leading n by k
  91. C part of the array B must contain the matrix B, otherwise
  92. C the leading k by n part of the array B must contain the
  93. C matrix B.
  94. C Unchanged on exit.
  95. C
  96. C LDB - INTEGER.
  97. C On entry, LDB specifies the first dimension of B as declared
  98. C in the calling (sub) program. When TRANS = 'N' or 'n'
  99. C then LDB must be at least max( 1, n ), otherwise LDB must
  100. C be at least max( 1, k ).
  101. C Unchanged on exit.
  102. C
  103. C BETA - COMPLEX .
  104. C On entry, BETA specifies the scalar beta.
  105. C Unchanged on exit.
  106. C
  107. C C - COMPLEX array of DIMENSION ( LDC, n ).
  108. C Before entry with UPLO = 'U' or 'u', the leading n by n
  109. C upper triangular part of the array C must contain the upper
  110. C triangular part of the symmetric matrix and the strictly
  111. C lower triangular part of C is not referenced. On exit, the
  112. C upper triangular part of the array C is overwritten by the
  113. C upper triangular part of the updated matrix.
  114. C Before entry with UPLO = 'L' or 'l', the leading n by n
  115. C lower triangular part of the array C must contain the lower
  116. C triangular part of the symmetric matrix and the strictly
  117. C upper triangular part of C is not referenced. On exit, the
  118. C lower triangular part of the array C is overwritten by the
  119. C lower triangular part of the updated matrix.
  120. C
  121. C LDC - INTEGER.
  122. C On entry, LDC specifies the first dimension of C as declared
  123. C in the calling (sub) program. LDC must be at least
  124. C max( 1, n ).
  125. C Unchanged on exit.
  126. C
  127. C***REFERENCES Dongarra, J., Du Croz, J., Duff, I., and Hammarling, S.
  128. C A set of level 3 basic linear algebra subprograms.
  129. C ACM TOMS, Vol. 16, No. 1, pp. 1-17, March 1990.
  130. C***ROUTINES CALLED LSAME, XERBLA
  131. C***REVISION HISTORY (YYMMDD)
  132. C 890208 DATE WRITTEN
  133. C 910605 Modified to meet SLATEC prologue standards. Only comment
  134. C lines were modified. (BKS)
  135. C***END PROLOGUE CSYR2K
  136. C .. Scalar Arguments ..
  137. CHARACTER*1 UPLO, TRANS
  138. INTEGER N, K, LDA, LDB, LDC
  139. COMPLEX ALPHA, BETA
  140. C .. Array Arguments ..
  141. COMPLEX A( LDA, * ), B( LDB, * ), C( LDC, * )
  142. C .. External Functions ..
  143. LOGICAL LSAME
  144. EXTERNAL LSAME
  145. C .. External Subroutines ..
  146. EXTERNAL XERBLA
  147. C .. Intrinsic Functions ..
  148. INTRINSIC MAX
  149. C .. Local Scalars ..
  150. LOGICAL UPPER
  151. INTEGER I, INFO, J, L, NROWA
  152. COMPLEX TEMP1, TEMP2
  153. C .. Parameters ..
  154. COMPLEX ONE
  155. PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
  156. COMPLEX ZERO
  157. PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
  158. C***FIRST EXECUTABLE STATEMENT CSYR2K
  159. C
  160. C Test the input parameters.
  161. C
  162. IF( LSAME( TRANS, 'N' ) )THEN
  163. NROWA = N
  164. ELSE
  165. NROWA = K
  166. END IF
  167. UPPER = LSAME( UPLO, 'U' )
  168. C
  169. INFO = 0
  170. IF( ( .NOT.UPPER ).AND.
  171. $ ( .NOT.LSAME( UPLO , 'L' ) ) )THEN
  172. INFO = 1
  173. ELSE IF( ( .NOT.LSAME( TRANS, 'N' ) ).AND.
  174. $ ( .NOT.LSAME( TRANS, 'T' ) ) )THEN
  175. INFO = 2
  176. ELSE IF( N .LT.0 )THEN
  177. INFO = 3
  178. ELSE IF( K .LT.0 )THEN
  179. INFO = 4
  180. ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
  181. INFO = 7
  182. ELSE IF( LDB.LT.MAX( 1, NROWA ) )THEN
  183. INFO = 9
  184. ELSE IF( LDC.LT.MAX( 1, N ) )THEN
  185. INFO = 12
  186. END IF
  187. IF( INFO.NE.0 )THEN
  188. CALL XERBLA( 'CSYR2K', INFO )
  189. RETURN
  190. END IF
  191. C
  192. C Quick return if possible.
  193. C
  194. IF( ( N.EQ.0 ).OR.
  195. $ ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) )
  196. $ RETURN
  197. C
  198. C And when alpha.eq.zero.
  199. C
  200. IF( ALPHA.EQ.ZERO )THEN
  201. IF( UPPER )THEN
  202. IF( BETA.EQ.ZERO )THEN
  203. DO 20, J = 1, N
  204. DO 10, I = 1, J
  205. C( I, J ) = ZERO
  206. 10 CONTINUE
  207. 20 CONTINUE
  208. ELSE
  209. DO 40, J = 1, N
  210. DO 30, I = 1, J
  211. C( I, J ) = BETA*C( I, J )
  212. 30 CONTINUE
  213. 40 CONTINUE
  214. END IF
  215. ELSE
  216. IF( BETA.EQ.ZERO )THEN
  217. DO 60, J = 1, N
  218. DO 50, I = J, N
  219. C( I, J ) = ZERO
  220. 50 CONTINUE
  221. 60 CONTINUE
  222. ELSE
  223. DO 80, J = 1, N
  224. DO 70, I = J, N
  225. C( I, J ) = BETA*C( I, J )
  226. 70 CONTINUE
  227. 80 CONTINUE
  228. END IF
  229. END IF
  230. RETURN
  231. END IF
  232. C
  233. C Start the operations.
  234. C
  235. IF( LSAME( TRANS, 'N' ) )THEN
  236. C
  237. C Form C := alpha*A*B' + alpha*B*A' + C.
  238. C
  239. IF( UPPER )THEN
  240. DO 130, J = 1, N
  241. IF( BETA.EQ.ZERO )THEN
  242. DO 90, I = 1, J
  243. C( I, J ) = ZERO
  244. 90 CONTINUE
  245. ELSE IF( BETA.NE.ONE )THEN
  246. DO 100, I = 1, J
  247. C( I, J ) = BETA*C( I, J )
  248. 100 CONTINUE
  249. END IF
  250. DO 120, L = 1, K
  251. IF( ( A( J, L ).NE.ZERO ).OR.
  252. $ ( B( J, L ).NE.ZERO ) )THEN
  253. TEMP1 = ALPHA*B( J, L )
  254. TEMP2 = ALPHA*A( J, L )
  255. DO 110, I = 1, J
  256. C( I, J ) = C( I, J ) + A( I, L )*TEMP1 +
  257. $ B( I, L )*TEMP2
  258. 110 CONTINUE
  259. END IF
  260. 120 CONTINUE
  261. 130 CONTINUE
  262. ELSE
  263. DO 180, J = 1, N
  264. IF( BETA.EQ.ZERO )THEN
  265. DO 140, I = J, N
  266. C( I, J ) = ZERO
  267. 140 CONTINUE
  268. ELSE IF( BETA.NE.ONE )THEN
  269. DO 150, I = J, N
  270. C( I, J ) = BETA*C( I, J )
  271. 150 CONTINUE
  272. END IF
  273. DO 170, L = 1, K
  274. IF( ( A( J, L ).NE.ZERO ).OR.
  275. $ ( B( J, L ).NE.ZERO ) )THEN
  276. TEMP1 = ALPHA*B( J, L )
  277. TEMP2 = ALPHA*A( J, L )
  278. DO 160, I = J, N
  279. C( I, J ) = C( I, J ) + A( I, L )*TEMP1 +
  280. $ B( I, L )*TEMP2
  281. 160 CONTINUE
  282. END IF
  283. 170 CONTINUE
  284. 180 CONTINUE
  285. END IF
  286. ELSE
  287. C
  288. C Form C := alpha*A'*B + alpha*B'*A + C.
  289. C
  290. IF( UPPER )THEN
  291. DO 210, J = 1, N
  292. DO 200, I = 1, J
  293. TEMP1 = ZERO
  294. TEMP2 = ZERO
  295. DO 190, L = 1, K
  296. TEMP1 = TEMP1 + A( L, I )*B( L, J )
  297. TEMP2 = TEMP2 + B( L, I )*A( L, J )
  298. 190 CONTINUE
  299. IF( BETA.EQ.ZERO )THEN
  300. C( I, J ) = ALPHA*TEMP1 + ALPHA*TEMP2
  301. ELSE
  302. C( I, J ) = BETA *C( I, J ) +
  303. $ ALPHA*TEMP1 + ALPHA*TEMP2
  304. END IF
  305. 200 CONTINUE
  306. 210 CONTINUE
  307. ELSE
  308. DO 240, J = 1, N
  309. DO 230, I = J, N
  310. TEMP1 = ZERO
  311. TEMP2 = ZERO
  312. DO 220, L = 1, K
  313. TEMP1 = TEMP1 + A( L, I )*B( L, J )
  314. TEMP2 = TEMP2 + B( L, I )*A( L, J )
  315. 220 CONTINUE
  316. IF( BETA.EQ.ZERO )THEN
  317. C( I, J ) = ALPHA*TEMP1 + ALPHA*TEMP2
  318. ELSE
  319. C( I, J ) = BETA *C( I, J ) +
  320. $ ALPHA*TEMP1 + ALPHA*TEMP2
  321. END IF
  322. 230 CONTINUE
  323. 240 CONTINUE
  324. END IF
  325. END IF
  326. C
  327. RETURN
  328. C
  329. C End of CSYR2K.
  330. C
  331. END