ctbmv.f 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385
  1. *DECK CTBMV
  2. SUBROUTINE CTBMV (UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX)
  3. C***BEGIN PROLOGUE CTBMV
  4. C***PURPOSE Multiply a complex vector by a complex triangular band
  5. C matrix.
  6. C***LIBRARY SLATEC (BLAS)
  7. C***CATEGORY D1B4
  8. C***TYPE COMPLEX (STBMV-S, DTBMV-D, CTBMV-C)
  9. C***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
  10. C***AUTHOR Dongarra, J. J., (ANL)
  11. C Du Croz, J., (NAG)
  12. C Hammarling, S., (NAG)
  13. C Hanson, R. J., (SNLA)
  14. C***DESCRIPTION
  15. C
  16. C CTBMV performs one of the matrix-vector operations
  17. C
  18. C x := A*x, or x := A'*x, or x := conjg( A')*x,
  19. C
  20. C where x is an n element vector and A is an n by n unit, or non-unit,
  21. C upper or lower triangular band matrix, with ( k + 1 ) diagonals.
  22. C
  23. C Parameters
  24. C ==========
  25. C
  26. C UPLO - CHARACTER*1.
  27. C On entry, UPLO specifies whether the matrix is an upper or
  28. C lower triangular matrix as follows:
  29. C
  30. C UPLO = 'U' or 'u' A is an upper triangular matrix.
  31. C
  32. C UPLO = 'L' or 'l' A is a lower triangular matrix.
  33. C
  34. C Unchanged on exit.
  35. C
  36. C TRANS - CHARACTER*1.
  37. C On entry, TRANS specifies the operation to be performed as
  38. C follows:
  39. C
  40. C TRANS = 'N' or 'n' x := A*x.
  41. C
  42. C TRANS = 'T' or 't' x := A'*x.
  43. C
  44. C TRANS = 'C' or 'c' x := conjg( A' )*x.
  45. C
  46. C Unchanged on exit.
  47. C
  48. C DIAG - CHARACTER*1.
  49. C On entry, DIAG specifies whether or not A is unit
  50. C triangular as follows:
  51. C
  52. C DIAG = 'U' or 'u' A is assumed to be unit triangular.
  53. C
  54. C DIAG = 'N' or 'n' A is not assumed to be unit
  55. C triangular.
  56. C
  57. C Unchanged on exit.
  58. C
  59. C N - INTEGER.
  60. C On entry, N specifies the order of the matrix A.
  61. C N must be at least zero.
  62. C Unchanged on exit.
  63. C
  64. C K - INTEGER.
  65. C On entry with UPLO = 'U' or 'u', K specifies the number of
  66. C super-diagonals of the matrix A.
  67. C On entry with UPLO = 'L' or 'l', K specifies the number of
  68. C sub-diagonals of the matrix A.
  69. C K must satisfy 0 .le. K.
  70. C Unchanged on exit.
  71. C
  72. C A - COMPLEX array of DIMENSION ( LDA, n ).
  73. C Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
  74. C by n part of the array A must contain the upper triangular
  75. C band part of the matrix of coefficients, supplied column by
  76. C column, with the leading diagonal of the matrix in row
  77. C ( k + 1 ) of the array, the first super-diagonal starting at
  78. C position 2 in row k, and so on. The top left k by k triangle
  79. C of the array A is not referenced.
  80. C The following program segment will transfer an upper
  81. C triangular band matrix from conventional full matrix storage
  82. C to band storage:
  83. C
  84. C DO 20, J = 1, N
  85. C M = K + 1 - J
  86. C DO 10, I = MAX( 1, J - K ), J
  87. C A( M + I, J ) = matrix( I, J )
  88. C 10 CONTINUE
  89. C 20 CONTINUE
  90. C
  91. C Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
  92. C by n part of the array A must contain the lower triangular
  93. C band part of the matrix of coefficients, supplied column by
  94. C column, with the leading diagonal of the matrix in row 1 of
  95. C the array, the first sub-diagonal starting at position 1 in
  96. C row 2, and so on. The bottom right k by k triangle of the
  97. C array A is not referenced.
  98. C The following program segment will transfer a lower
  99. C triangular band matrix from conventional full matrix storage
  100. C to band storage:
  101. C
  102. C DO 20, J = 1, N
  103. C M = 1 - J
  104. C DO 10, I = J, MIN( N, J + K )
  105. C A( M + I, J ) = matrix( I, J )
  106. C 10 CONTINUE
  107. C 20 CONTINUE
  108. C
  109. C Note that when DIAG = 'U' or 'u' the elements of the array A
  110. C corresponding to the diagonal elements of the matrix are not
  111. C referenced, but are assumed to be unity.
  112. C Unchanged on exit.
  113. C
  114. C LDA - INTEGER.
  115. C On entry, LDA specifies the first dimension of A as declared
  116. C in the calling (sub) program. LDA must be at least
  117. C ( k + 1 ).
  118. C Unchanged on exit.
  119. C
  120. C X - COMPLEX array of dimension at least
  121. C ( 1 + ( n - 1 )*abs( INCX ) ).
  122. C Before entry, the incremented array X must contain the n
  123. C element vector x. On exit, X is overwritten with the
  124. C transformed vector x.
  125. C
  126. C INCX - INTEGER.
  127. C On entry, INCX specifies the increment for the elements of
  128. C X. INCX must not be zero.
  129. C Unchanged on exit.
  130. C
  131. C***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
  132. C Hanson, R. J. An extended set of Fortran basic linear
  133. C algebra subprograms. ACM TOMS, Vol. 14, No. 1,
  134. C pp. 1-17, March 1988.
  135. C***ROUTINES CALLED LSAME, XERBLA
  136. C***REVISION HISTORY (YYMMDD)
  137. C 861022 DATE WRITTEN
  138. C 910605 Modified to meet SLATEC prologue standards. Only comment
  139. C lines were modified. (BKS)
  140. C***END PROLOGUE CTBMV
  141. C .. Scalar Arguments ..
  142. INTEGER INCX, K, LDA, N
  143. CHARACTER*1 DIAG, TRANS, UPLO
  144. C .. Array Arguments ..
  145. COMPLEX A( LDA, * ), X( * )
  146. C .. Parameters ..
  147. COMPLEX ZERO
  148. PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
  149. C .. Local Scalars ..
  150. COMPLEX TEMP
  151. INTEGER I, INFO, IX, J, JX, KPLUS1, KX, L
  152. LOGICAL NOCONJ, NOUNIT
  153. C .. External Functions ..
  154. LOGICAL LSAME
  155. EXTERNAL LSAME
  156. C .. External Subroutines ..
  157. EXTERNAL XERBLA
  158. C .. Intrinsic Functions ..
  159. INTRINSIC CONJG, MAX, MIN
  160. C***FIRST EXECUTABLE STATEMENT CTBMV
  161. C
  162. C Test the input parameters.
  163. C
  164. INFO = 0
  165. IF ( .NOT.LSAME( UPLO , 'U' ).AND.
  166. $ .NOT.LSAME( UPLO , 'L' ) )THEN
  167. INFO = 1
  168. ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND.
  169. $ .NOT.LSAME( TRANS, 'T' ).AND.
  170. $ .NOT.LSAME( TRANS, 'C' ) )THEN
  171. INFO = 2
  172. ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND.
  173. $ .NOT.LSAME( DIAG , 'N' ) )THEN
  174. INFO = 3
  175. ELSE IF( N.LT.0 )THEN
  176. INFO = 4
  177. ELSE IF( K.LT.0 )THEN
  178. INFO = 5
  179. ELSE IF( LDA.LT.( K + 1 ) )THEN
  180. INFO = 7
  181. ELSE IF( INCX.EQ.0 )THEN
  182. INFO = 9
  183. END IF
  184. IF( INFO.NE.0 )THEN
  185. CALL XERBLA( 'CTBMV ', INFO )
  186. RETURN
  187. END IF
  188. C
  189. C Quick return if possible.
  190. C
  191. IF( N.EQ.0 )
  192. $ RETURN
  193. C
  194. NOCONJ = LSAME( TRANS, 'T' )
  195. NOUNIT = LSAME( DIAG , 'N' )
  196. C
  197. C Set up the start point in X if the increment is not unity. This
  198. C will be ( N - 1 )*INCX too small for descending loops.
  199. C
  200. IF( INCX.LE.0 )THEN
  201. KX = 1 - ( N - 1 )*INCX
  202. ELSE IF( INCX.NE.1 )THEN
  203. KX = 1
  204. END IF
  205. C
  206. C Start the operations. In this version the elements of A are
  207. C accessed sequentially with one pass through A.
  208. C
  209. IF( LSAME( TRANS, 'N' ) )THEN
  210. C
  211. C Form x := A*x.
  212. C
  213. IF( LSAME( UPLO, 'U' ) )THEN
  214. KPLUS1 = K + 1
  215. IF( INCX.EQ.1 )THEN
  216. DO 20, J = 1, N
  217. IF( X( J ).NE.ZERO )THEN
  218. TEMP = X( J )
  219. L = KPLUS1 - J
  220. DO 10, I = MAX( 1, J - K ), J - 1
  221. X( I ) = X( I ) + TEMP*A( L + I, J )
  222. 10 CONTINUE
  223. IF( NOUNIT )
  224. $ X( J ) = X( J )*A( KPLUS1, J )
  225. END IF
  226. 20 CONTINUE
  227. ELSE
  228. JX = KX
  229. DO 40, J = 1, N
  230. IF( X( JX ).NE.ZERO )THEN
  231. TEMP = X( JX )
  232. IX = KX
  233. L = KPLUS1 - J
  234. DO 30, I = MAX( 1, J - K ), J - 1
  235. X( IX ) = X( IX ) + TEMP*A( L + I, J )
  236. IX = IX + INCX
  237. 30 CONTINUE
  238. IF( NOUNIT )
  239. $ X( JX ) = X( JX )*A( KPLUS1, J )
  240. END IF
  241. JX = JX + INCX
  242. IF( J.GT.K )
  243. $ KX = KX + INCX
  244. 40 CONTINUE
  245. END IF
  246. ELSE
  247. IF( INCX.EQ.1 )THEN
  248. DO 60, J = N, 1, -1
  249. IF( X( J ).NE.ZERO )THEN
  250. TEMP = X( J )
  251. L = 1 - J
  252. DO 50, I = MIN( N, J + K ), J + 1, -1
  253. X( I ) = X( I ) + TEMP*A( L + I, J )
  254. 50 CONTINUE
  255. IF( NOUNIT )
  256. $ X( J ) = X( J )*A( 1, J )
  257. END IF
  258. 60 CONTINUE
  259. ELSE
  260. KX = KX + ( N - 1 )*INCX
  261. JX = KX
  262. DO 80, J = N, 1, -1
  263. IF( X( JX ).NE.ZERO )THEN
  264. TEMP = X( JX )
  265. IX = KX
  266. L = 1 - J
  267. DO 70, I = MIN( N, J + K ), J + 1, -1
  268. X( IX ) = X( IX ) + TEMP*A( L + I, J )
  269. IX = IX - INCX
  270. 70 CONTINUE
  271. IF( NOUNIT )
  272. $ X( JX ) = X( JX )*A( 1, J )
  273. END IF
  274. JX = JX - INCX
  275. IF( ( N - J ).GE.K )
  276. $ KX = KX - INCX
  277. 80 CONTINUE
  278. END IF
  279. END IF
  280. ELSE
  281. C
  282. C Form x := A'*x or x := conjg( A' )*x.
  283. C
  284. IF( LSAME( UPLO, 'U' ) )THEN
  285. KPLUS1 = K + 1
  286. IF( INCX.EQ.1 )THEN
  287. DO 110, J = N, 1, -1
  288. TEMP = X( J )
  289. L = KPLUS1 - J
  290. IF( NOCONJ )THEN
  291. IF( NOUNIT )
  292. $ TEMP = TEMP*A( KPLUS1, J )
  293. DO 90, I = J - 1, MAX( 1, J - K ), -1
  294. TEMP = TEMP + A( L + I, J )*X( I )
  295. 90 CONTINUE
  296. ELSE
  297. IF( NOUNIT )
  298. $ TEMP = TEMP*CONJG( A( KPLUS1, J ) )
  299. DO 100, I = J - 1, MAX( 1, J - K ), -1
  300. TEMP = TEMP + CONJG( A( L + I, J ) )*X( I )
  301. 100 CONTINUE
  302. END IF
  303. X( J ) = TEMP
  304. 110 CONTINUE
  305. ELSE
  306. KX = KX + ( N - 1 )*INCX
  307. JX = KX
  308. DO 140, J = N, 1, -1
  309. TEMP = X( JX )
  310. KX = KX - INCX
  311. IX = KX
  312. L = KPLUS1 - J
  313. IF( NOCONJ )THEN
  314. IF( NOUNIT )
  315. $ TEMP = TEMP*A( KPLUS1, J )
  316. DO 120, I = J - 1, MAX( 1, J - K ), -1
  317. TEMP = TEMP + A( L + I, J )*X( IX )
  318. IX = IX - INCX
  319. 120 CONTINUE
  320. ELSE
  321. IF( NOUNIT )
  322. $ TEMP = TEMP*CONJG( A( KPLUS1, J ) )
  323. DO 130, I = J - 1, MAX( 1, J - K ), -1
  324. TEMP = TEMP + CONJG( A( L + I, J ) )*X( IX )
  325. IX = IX - INCX
  326. 130 CONTINUE
  327. END IF
  328. X( JX ) = TEMP
  329. JX = JX - INCX
  330. 140 CONTINUE
  331. END IF
  332. ELSE
  333. IF( INCX.EQ.1 )THEN
  334. DO 170, J = 1, N
  335. TEMP = X( J )
  336. L = 1 - J
  337. IF( NOCONJ )THEN
  338. IF( NOUNIT )
  339. $ TEMP = TEMP*A( 1, J )
  340. DO 150, I = J + 1, MIN( N, J + K )
  341. TEMP = TEMP + A( L + I, J )*X( I )
  342. 150 CONTINUE
  343. ELSE
  344. IF( NOUNIT )
  345. $ TEMP = TEMP*CONJG( A( 1, J ) )
  346. DO 160, I = J + 1, MIN( N, J + K )
  347. TEMP = TEMP + CONJG( A( L + I, J ) )*X( I )
  348. 160 CONTINUE
  349. END IF
  350. X( J ) = TEMP
  351. 170 CONTINUE
  352. ELSE
  353. JX = KX
  354. DO 200, J = 1, N
  355. TEMP = X( JX )
  356. KX = KX + INCX
  357. IX = KX
  358. L = 1 - J
  359. IF( NOCONJ )THEN
  360. IF( NOUNIT )
  361. $ TEMP = TEMP*A( 1, J )
  362. DO 180, I = J + 1, MIN( N, J + K )
  363. TEMP = TEMP + A( L + I, J )*X( IX )
  364. IX = IX + INCX
  365. 180 CONTINUE
  366. ELSE
  367. IF( NOUNIT )
  368. $ TEMP = TEMP*CONJG( A( 1, J ) )
  369. DO 190, I = J + 1, MIN( N, J + K )
  370. TEMP = TEMP + CONJG( A( L + I, J ) )*X( IX )
  371. IX = IX + INCX
  372. 190 CONTINUE
  373. END IF
  374. X( JX ) = TEMP
  375. JX = JX + INCX
  376. 200 CONTINUE
  377. END IF
  378. END IF
  379. END IF
  380. C
  381. RETURN
  382. C
  383. C End of CTBMV .
  384. C
  385. END