ctbsv.f 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388
  1. *DECK CTBSV
  2. SUBROUTINE CTBSV (UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX)
  3. C***BEGIN PROLOGUE CTBSV
  4. C***PURPOSE Solve a complex triangular banded system of equations.
  5. C***LIBRARY SLATEC (BLAS)
  6. C***CATEGORY D1B4
  7. C***TYPE COMPLEX (STBSV-S, DTBSV-D, CTBSV-C)
  8. C***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
  9. C***AUTHOR Dongarra, J. J., (ANL)
  10. C Du Croz, J., (NAG)
  11. C Hammarling, S., (NAG)
  12. C Hanson, R. J., (SNLA)
  13. C***DESCRIPTION
  14. C
  15. C CTBSV solves one of the systems of equations
  16. C
  17. C A*x = b, or A'*x = b, or conjg( A')*x = b,
  18. C
  19. C where b and x are n element vectors and A is an n by n unit, or
  20. C non-unit, upper or lower triangular band matrix, with ( k + 1 )
  21. C diagonals.
  22. C
  23. C No test for singularity or near-singularity is included in this
  24. C routine. Such tests must be performed before calling this routine.
  25. C
  26. C Parameters
  27. C ==========
  28. C
  29. C UPLO - CHARACTER*1.
  30. C On entry, UPLO specifies whether the matrix is an upper or
  31. C lower triangular matrix as follows:
  32. C
  33. C UPLO = 'U' or 'u' A is an upper triangular matrix.
  34. C
  35. C UPLO = 'L' or 'l' A is a lower triangular matrix.
  36. C
  37. C Unchanged on exit.
  38. C
  39. C TRANS - CHARACTER*1.
  40. C On entry, TRANS specifies the equations to be solved as
  41. C follows:
  42. C
  43. C TRANS = 'N' or 'n' A*x = b.
  44. C
  45. C TRANS = 'T' or 't' A'*x = b.
  46. C
  47. C TRANS = 'C' or 'c' conjg( A' )*x = b.
  48. C
  49. C Unchanged on exit.
  50. C
  51. C DIAG - CHARACTER*1.
  52. C On entry, DIAG specifies whether or not A is unit
  53. C triangular as follows:
  54. C
  55. C DIAG = 'U' or 'u' A is assumed to be unit triangular.
  56. C
  57. C DIAG = 'N' or 'n' A is not assumed to be unit
  58. C triangular.
  59. C
  60. C Unchanged on exit.
  61. C
  62. C N - INTEGER.
  63. C On entry, N specifies the order of the matrix A.
  64. C N must be at least zero.
  65. C Unchanged on exit.
  66. C
  67. C K - INTEGER.
  68. C On entry with UPLO = 'U' or 'u', K specifies the number of
  69. C super-diagonals of the matrix A.
  70. C On entry with UPLO = 'L' or 'l', K specifies the number of
  71. C sub-diagonals of the matrix A.
  72. C K must satisfy 0 .le. K.
  73. C Unchanged on exit.
  74. C
  75. C A - COMPLEX array of DIMENSION ( LDA, n ).
  76. C Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
  77. C by n part of the array A must contain the upper triangular
  78. C band part of the matrix of coefficients, supplied column by
  79. C column, with the leading diagonal of the matrix in row
  80. C ( k + 1 ) of the array, the first super-diagonal starting at
  81. C position 2 in row k, and so on. The top left k by k triangle
  82. C of the array A is not referenced.
  83. C The following program segment will transfer an upper
  84. C triangular band matrix from conventional full matrix storage
  85. C to band storage:
  86. C
  87. C DO 20, J = 1, N
  88. C M = K + 1 - J
  89. C DO 10, I = MAX( 1, J - K ), J
  90. C A( M + I, J ) = matrix( I, J )
  91. C 10 CONTINUE
  92. C 20 CONTINUE
  93. C
  94. C Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
  95. C by n part of the array A must contain the lower triangular
  96. C band part of the matrix of coefficients, supplied column by
  97. C column, with the leading diagonal of the matrix in row 1 of
  98. C the array, the first sub-diagonal starting at position 1 in
  99. C row 2, and so on. The bottom right k by k triangle of the
  100. C array A is not referenced.
  101. C The following program segment will transfer a lower
  102. C triangular band matrix from conventional full matrix storage
  103. C to band storage:
  104. C
  105. C DO 20, J = 1, N
  106. C M = 1 - J
  107. C DO 10, I = J, MIN( N, J + K )
  108. C A( M + I, J ) = matrix( I, J )
  109. C 10 CONTINUE
  110. C 20 CONTINUE
  111. C
  112. C Note that when DIAG = 'U' or 'u' the elements of the array A
  113. C corresponding to the diagonal elements of the matrix are not
  114. C referenced, but are assumed to be unity.
  115. C Unchanged on exit.
  116. C
  117. C LDA - INTEGER.
  118. C On entry, LDA specifies the first dimension of A as declared
  119. C in the calling (sub) program. LDA must be at least
  120. C ( k + 1 ).
  121. C Unchanged on exit.
  122. C
  123. C X - COMPLEX array of dimension at least
  124. C ( 1 + ( n - 1 )*abs( INCX ) ).
  125. C Before entry, the incremented array X must contain the n
  126. C element right-hand side vector b. On exit, X is overwritten
  127. C with the solution vector x.
  128. C
  129. C INCX - INTEGER.
  130. C On entry, INCX specifies the increment for the elements of
  131. C X. INCX must not be zero.
  132. C Unchanged on exit.
  133. C
  134. C***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
  135. C Hanson, R. J. An extended set of Fortran basic linear
  136. C algebra subprograms. ACM TOMS, Vol. 14, No. 1,
  137. C pp. 1-17, March 1988.
  138. C***ROUTINES CALLED LSAME, XERBLA
  139. C***REVISION HISTORY (YYMMDD)
  140. C 861022 DATE WRITTEN
  141. C 910605 Modified to meet SLATEC prologue standards. Only comment
  142. C lines were modified. (BKS)
  143. C***END PROLOGUE CTBSV
  144. C .. Scalar Arguments ..
  145. INTEGER INCX, K, LDA, N
  146. CHARACTER*1 DIAG, TRANS, UPLO
  147. C .. Array Arguments ..
  148. COMPLEX A( LDA, * ), X( * )
  149. C .. Parameters ..
  150. COMPLEX ZERO
  151. PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
  152. C .. Local Scalars ..
  153. COMPLEX TEMP
  154. INTEGER I, INFO, IX, J, JX, KPLUS1, KX, L
  155. LOGICAL NOCONJ, NOUNIT
  156. C .. External Functions ..
  157. LOGICAL LSAME
  158. EXTERNAL LSAME
  159. C .. External Subroutines ..
  160. EXTERNAL XERBLA
  161. C .. Intrinsic Functions ..
  162. INTRINSIC CONJG, MAX, MIN
  163. C***FIRST EXECUTABLE STATEMENT CTBSV
  164. C
  165. C Test the input parameters.
  166. C
  167. INFO = 0
  168. IF ( .NOT.LSAME( UPLO , 'U' ).AND.
  169. $ .NOT.LSAME( UPLO , 'L' ) )THEN
  170. INFO = 1
  171. ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND.
  172. $ .NOT.LSAME( TRANS, 'T' ).AND.
  173. $ .NOT.LSAME( TRANS, 'C' ) )THEN
  174. INFO = 2
  175. ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND.
  176. $ .NOT.LSAME( DIAG , 'N' ) )THEN
  177. INFO = 3
  178. ELSE IF( N.LT.0 )THEN
  179. INFO = 4
  180. ELSE IF( K.LT.0 )THEN
  181. INFO = 5
  182. ELSE IF( LDA.LT.( K + 1 ) )THEN
  183. INFO = 7
  184. ELSE IF( INCX.EQ.0 )THEN
  185. INFO = 9
  186. END IF
  187. IF( INFO.NE.0 )THEN
  188. CALL XERBLA( 'CTBSV ', INFO )
  189. RETURN
  190. END IF
  191. C
  192. C Quick return if possible.
  193. C
  194. IF( N.EQ.0 )
  195. $ RETURN
  196. C
  197. NOCONJ = LSAME( TRANS, 'T' )
  198. NOUNIT = LSAME( DIAG , 'N' )
  199. C
  200. C Set up the start point in X if the increment is not unity. This
  201. C will be ( N - 1 )*INCX too small for descending loops.
  202. C
  203. IF( INCX.LE.0 )THEN
  204. KX = 1 - ( N - 1 )*INCX
  205. ELSE IF( INCX.NE.1 )THEN
  206. KX = 1
  207. END IF
  208. C
  209. C Start the operations. In this version the elements of A are
  210. C accessed by sequentially with one pass through A.
  211. C
  212. IF( LSAME( TRANS, 'N' ) )THEN
  213. C
  214. C Form x := inv( A )*x.
  215. C
  216. IF( LSAME( UPLO, 'U' ) )THEN
  217. KPLUS1 = K + 1
  218. IF( INCX.EQ.1 )THEN
  219. DO 20, J = N, 1, -1
  220. IF( X( J ).NE.ZERO )THEN
  221. L = KPLUS1 - J
  222. IF( NOUNIT )
  223. $ X( J ) = X( J )/A( KPLUS1, J )
  224. TEMP = X( J )
  225. DO 10, I = J - 1, MAX( 1, J - K ), -1
  226. X( I ) = X( I ) - TEMP*A( L + I, J )
  227. 10 CONTINUE
  228. END IF
  229. 20 CONTINUE
  230. ELSE
  231. KX = KX + ( N - 1 )*INCX
  232. JX = KX
  233. DO 40, J = N, 1, -1
  234. KX = KX - INCX
  235. IF( X( JX ).NE.ZERO )THEN
  236. IX = KX
  237. L = KPLUS1 - J
  238. IF( NOUNIT )
  239. $ X( JX ) = X( JX )/A( KPLUS1, J )
  240. TEMP = X( JX )
  241. DO 30, I = J - 1, MAX( 1, J - K ), -1
  242. X( IX ) = X( IX ) - TEMP*A( L + I, J )
  243. IX = IX - INCX
  244. 30 CONTINUE
  245. END IF
  246. JX = JX - INCX
  247. 40 CONTINUE
  248. END IF
  249. ELSE
  250. IF( INCX.EQ.1 )THEN
  251. DO 60, J = 1, N
  252. IF( X( J ).NE.ZERO )THEN
  253. L = 1 - J
  254. IF( NOUNIT )
  255. $ X( J ) = X( J )/A( 1, J )
  256. TEMP = X( J )
  257. DO 50, I = J + 1, MIN( N, J + K )
  258. X( I ) = X( I ) - TEMP*A( L + I, J )
  259. 50 CONTINUE
  260. END IF
  261. 60 CONTINUE
  262. ELSE
  263. JX = KX
  264. DO 80, J = 1, N
  265. KX = KX + INCX
  266. IF( X( JX ).NE.ZERO )THEN
  267. IX = KX
  268. L = 1 - J
  269. IF( NOUNIT )
  270. $ X( JX ) = X( JX )/A( 1, J )
  271. TEMP = X( JX )
  272. DO 70, I = J + 1, MIN( N, J + K )
  273. X( IX ) = X( IX ) - TEMP*A( L + I, J )
  274. IX = IX + INCX
  275. 70 CONTINUE
  276. END IF
  277. JX = JX + INCX
  278. 80 CONTINUE
  279. END IF
  280. END IF
  281. ELSE
  282. C
  283. C Form x := inv( A' )*x or x := inv( conjg( A') )*x.
  284. C
  285. IF( LSAME( UPLO, 'U' ) )THEN
  286. KPLUS1 = K + 1
  287. IF( INCX.EQ.1 )THEN
  288. DO 110, J = 1, N
  289. TEMP = X( J )
  290. L = KPLUS1 - J
  291. IF( NOCONJ )THEN
  292. DO 90, I = MAX( 1, J - K ), J - 1
  293. TEMP = TEMP - A( L + I, J )*X( I )
  294. 90 CONTINUE
  295. IF( NOUNIT )
  296. $ TEMP = TEMP/A( KPLUS1, J )
  297. ELSE
  298. DO 100, I = MAX( 1, J - K ), J - 1
  299. TEMP = TEMP - CONJG( A( L + I, J ) )*X( I )
  300. 100 CONTINUE
  301. IF( NOUNIT )
  302. $ TEMP = TEMP/CONJG( A( KPLUS1, J ) )
  303. END IF
  304. X( J ) = TEMP
  305. 110 CONTINUE
  306. ELSE
  307. JX = KX
  308. DO 140, J = 1, N
  309. TEMP = X( JX )
  310. IX = KX
  311. L = KPLUS1 - J
  312. IF( NOCONJ )THEN
  313. DO 120, I = MAX( 1, J - K ), J - 1
  314. TEMP = TEMP - A( L + I, J )*X( IX )
  315. IX = IX + INCX
  316. 120 CONTINUE
  317. IF( NOUNIT )
  318. $ TEMP = TEMP/A( KPLUS1, J )
  319. ELSE
  320. DO 130, I = MAX( 1, J - K ), J - 1
  321. TEMP = TEMP - CONJG( A( L + I, J ) )*X( IX )
  322. IX = IX + INCX
  323. 130 CONTINUE
  324. IF( NOUNIT )
  325. $ TEMP = TEMP/CONJG( A( KPLUS1, J ) )
  326. END IF
  327. X( JX ) = TEMP
  328. JX = JX + INCX
  329. IF( J.GT.K )
  330. $ KX = KX + INCX
  331. 140 CONTINUE
  332. END IF
  333. ELSE
  334. IF( INCX.EQ.1 )THEN
  335. DO 170, J = N, 1, -1
  336. TEMP = X( J )
  337. L = 1 - J
  338. IF( NOCONJ )THEN
  339. DO 150, I = MIN( N, J + K ), J + 1, -1
  340. TEMP = TEMP - A( L + I, J )*X( I )
  341. 150 CONTINUE
  342. IF( NOUNIT )
  343. $ TEMP = TEMP/A( 1, J )
  344. ELSE
  345. DO 160, I = MIN( N, J + K ), J + 1, -1
  346. TEMP = TEMP - CONJG( A( L + I, J ) )*X( I )
  347. 160 CONTINUE
  348. IF( NOUNIT )
  349. $ TEMP = TEMP/CONJG( A( 1, J ) )
  350. END IF
  351. X( J ) = TEMP
  352. 170 CONTINUE
  353. ELSE
  354. KX = KX + ( N - 1 )*INCX
  355. JX = KX
  356. DO 200, J = N, 1, -1
  357. TEMP = X( JX )
  358. IX = KX
  359. L = 1 - J
  360. IF( NOCONJ )THEN
  361. DO 180, I = MIN( N, J + K ), J + 1, -1
  362. TEMP = TEMP - A( L + I, J )*X( IX )
  363. IX = IX - INCX
  364. 180 CONTINUE
  365. IF( NOUNIT )
  366. $ TEMP = TEMP/A( 1, J )
  367. ELSE
  368. DO 190, I = MIN( N, J + K ), J + 1, -1
  369. TEMP = TEMP - CONJG( A( L + I, J ) )*X( IX )
  370. IX = IX - INCX
  371. 190 CONTINUE
  372. IF( NOUNIT )
  373. $ TEMP = TEMP/CONJG( A( 1, J ) )
  374. END IF
  375. X( JX ) = TEMP
  376. JX = JX - INCX
  377. IF( ( N - J ).GE.K )
  378. $ KX = KX - INCX
  379. 200 CONTINUE
  380. END IF
  381. END IF
  382. END IF
  383. C
  384. RETURN
  385. C
  386. C End of CTBSV .
  387. C
  388. END