123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388 |
- *DECK CTBSV
- SUBROUTINE CTBSV (UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX)
- C***BEGIN PROLOGUE CTBSV
- C***PURPOSE Solve a complex triangular banded system of equations.
- C***LIBRARY SLATEC (BLAS)
- C***CATEGORY D1B4
- C***TYPE COMPLEX (STBSV-S, DTBSV-D, CTBSV-C)
- C***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
- C***AUTHOR Dongarra, J. J., (ANL)
- C Du Croz, J., (NAG)
- C Hammarling, S., (NAG)
- C Hanson, R. J., (SNLA)
- C***DESCRIPTION
- C
- C CTBSV solves one of the systems of equations
- C
- C A*x = b, or A'*x = b, or conjg( A')*x = b,
- C
- C where b and x are n element vectors and A is an n by n unit, or
- C non-unit, upper or lower triangular band matrix, with ( k + 1 )
- C diagonals.
- C
- C No test for singularity or near-singularity is included in this
- C routine. Such tests must be performed before calling this routine.
- C
- C Parameters
- C ==========
- C
- C UPLO - CHARACTER*1.
- C On entry, UPLO specifies whether the matrix is an upper or
- C lower triangular matrix as follows:
- C
- C UPLO = 'U' or 'u' A is an upper triangular matrix.
- C
- C UPLO = 'L' or 'l' A is a lower triangular matrix.
- C
- C Unchanged on exit.
- C
- C TRANS - CHARACTER*1.
- C On entry, TRANS specifies the equations to be solved as
- C follows:
- C
- C TRANS = 'N' or 'n' A*x = b.
- C
- C TRANS = 'T' or 't' A'*x = b.
- C
- C TRANS = 'C' or 'c' conjg( A' )*x = b.
- C
- C Unchanged on exit.
- C
- C DIAG - CHARACTER*1.
- C On entry, DIAG specifies whether or not A is unit
- C triangular as follows:
- C
- C DIAG = 'U' or 'u' A is assumed to be unit triangular.
- C
- C DIAG = 'N' or 'n' A is not assumed to be unit
- C triangular.
- C
- C Unchanged on exit.
- C
- C N - INTEGER.
- C On entry, N specifies the order of the matrix A.
- C N must be at least zero.
- C Unchanged on exit.
- C
- C K - INTEGER.
- C On entry with UPLO = 'U' or 'u', K specifies the number of
- C super-diagonals of the matrix A.
- C On entry with UPLO = 'L' or 'l', K specifies the number of
- C sub-diagonals of the matrix A.
- C K must satisfy 0 .le. K.
- C Unchanged on exit.
- C
- C A - COMPLEX array of DIMENSION ( LDA, n ).
- C Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
- C by n part of the array A must contain the upper triangular
- C band part of the matrix of coefficients, supplied column by
- C column, with the leading diagonal of the matrix in row
- C ( k + 1 ) of the array, the first super-diagonal starting at
- C position 2 in row k, and so on. The top left k by k triangle
- C of the array A is not referenced.
- C The following program segment will transfer an upper
- C triangular band matrix from conventional full matrix storage
- C to band storage:
- C
- C DO 20, J = 1, N
- C M = K + 1 - J
- C DO 10, I = MAX( 1, J - K ), J
- C A( M + I, J ) = matrix( I, J )
- C 10 CONTINUE
- C 20 CONTINUE
- C
- C Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
- C by n part of the array A must contain the lower triangular
- C band part of the matrix of coefficients, supplied column by
- C column, with the leading diagonal of the matrix in row 1 of
- C the array, the first sub-diagonal starting at position 1 in
- C row 2, and so on. The bottom right k by k triangle of the
- C array A is not referenced.
- C The following program segment will transfer a lower
- C triangular band matrix from conventional full matrix storage
- C to band storage:
- C
- C DO 20, J = 1, N
- C M = 1 - J
- C DO 10, I = J, MIN( N, J + K )
- C A( M + I, J ) = matrix( I, J )
- C 10 CONTINUE
- C 20 CONTINUE
- C
- C Note that when DIAG = 'U' or 'u' the elements of the array A
- C corresponding to the diagonal elements of the matrix are not
- C referenced, but are assumed to be unity.
- C Unchanged on exit.
- C
- C LDA - INTEGER.
- C On entry, LDA specifies the first dimension of A as declared
- C in the calling (sub) program. LDA must be at least
- C ( k + 1 ).
- C Unchanged on exit.
- C
- C X - COMPLEX array of dimension at least
- C ( 1 + ( n - 1 )*abs( INCX ) ).
- C Before entry, the incremented array X must contain the n
- C element right-hand side vector b. On exit, X is overwritten
- C with the solution vector x.
- C
- C INCX - INTEGER.
- C On entry, INCX specifies the increment for the elements of
- C X. INCX must not be zero.
- C Unchanged on exit.
- C
- C***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
- C Hanson, R. J. An extended set of Fortran basic linear
- C algebra subprograms. ACM TOMS, Vol. 14, No. 1,
- C pp. 1-17, March 1988.
- C***ROUTINES CALLED LSAME, XERBLA
- C***REVISION HISTORY (YYMMDD)
- C 861022 DATE WRITTEN
- C 910605 Modified to meet SLATEC prologue standards. Only comment
- C lines were modified. (BKS)
- C***END PROLOGUE CTBSV
- C .. Scalar Arguments ..
- INTEGER INCX, K, LDA, N
- CHARACTER*1 DIAG, TRANS, UPLO
- C .. Array Arguments ..
- COMPLEX A( LDA, * ), X( * )
- C .. Parameters ..
- COMPLEX ZERO
- PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
- C .. Local Scalars ..
- COMPLEX TEMP
- INTEGER I, INFO, IX, J, JX, KPLUS1, KX, L
- LOGICAL NOCONJ, NOUNIT
- C .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- C .. External Subroutines ..
- EXTERNAL XERBLA
- C .. Intrinsic Functions ..
- INTRINSIC CONJG, MAX, MIN
- C***FIRST EXECUTABLE STATEMENT CTBSV
- C
- C Test the input parameters.
- C
- INFO = 0
- IF ( .NOT.LSAME( UPLO , 'U' ).AND.
- $ .NOT.LSAME( UPLO , 'L' ) )THEN
- INFO = 1
- ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND.
- $ .NOT.LSAME( TRANS, 'T' ).AND.
- $ .NOT.LSAME( TRANS, 'C' ) )THEN
- INFO = 2
- ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND.
- $ .NOT.LSAME( DIAG , 'N' ) )THEN
- INFO = 3
- ELSE IF( N.LT.0 )THEN
- INFO = 4
- ELSE IF( K.LT.0 )THEN
- INFO = 5
- ELSE IF( LDA.LT.( K + 1 ) )THEN
- INFO = 7
- ELSE IF( INCX.EQ.0 )THEN
- INFO = 9
- END IF
- IF( INFO.NE.0 )THEN
- CALL XERBLA( 'CTBSV ', INFO )
- RETURN
- END IF
- C
- C Quick return if possible.
- C
- IF( N.EQ.0 )
- $ RETURN
- C
- NOCONJ = LSAME( TRANS, 'T' )
- NOUNIT = LSAME( DIAG , 'N' )
- C
- C Set up the start point in X if the increment is not unity. This
- C will be ( N - 1 )*INCX too small for descending loops.
- C
- IF( INCX.LE.0 )THEN
- KX = 1 - ( N - 1 )*INCX
- ELSE IF( INCX.NE.1 )THEN
- KX = 1
- END IF
- C
- C Start the operations. In this version the elements of A are
- C accessed by sequentially with one pass through A.
- C
- IF( LSAME( TRANS, 'N' ) )THEN
- C
- C Form x := inv( A )*x.
- C
- IF( LSAME( UPLO, 'U' ) )THEN
- KPLUS1 = K + 1
- IF( INCX.EQ.1 )THEN
- DO 20, J = N, 1, -1
- IF( X( J ).NE.ZERO )THEN
- L = KPLUS1 - J
- IF( NOUNIT )
- $ X( J ) = X( J )/A( KPLUS1, J )
- TEMP = X( J )
- DO 10, I = J - 1, MAX( 1, J - K ), -1
- X( I ) = X( I ) - TEMP*A( L + I, J )
- 10 CONTINUE
- END IF
- 20 CONTINUE
- ELSE
- KX = KX + ( N - 1 )*INCX
- JX = KX
- DO 40, J = N, 1, -1
- KX = KX - INCX
- IF( X( JX ).NE.ZERO )THEN
- IX = KX
- L = KPLUS1 - J
- IF( NOUNIT )
- $ X( JX ) = X( JX )/A( KPLUS1, J )
- TEMP = X( JX )
- DO 30, I = J - 1, MAX( 1, J - K ), -1
- X( IX ) = X( IX ) - TEMP*A( L + I, J )
- IX = IX - INCX
- 30 CONTINUE
- END IF
- JX = JX - INCX
- 40 CONTINUE
- END IF
- ELSE
- IF( INCX.EQ.1 )THEN
- DO 60, J = 1, N
- IF( X( J ).NE.ZERO )THEN
- L = 1 - J
- IF( NOUNIT )
- $ X( J ) = X( J )/A( 1, J )
- TEMP = X( J )
- DO 50, I = J + 1, MIN( N, J + K )
- X( I ) = X( I ) - TEMP*A( L + I, J )
- 50 CONTINUE
- END IF
- 60 CONTINUE
- ELSE
- JX = KX
- DO 80, J = 1, N
- KX = KX + INCX
- IF( X( JX ).NE.ZERO )THEN
- IX = KX
- L = 1 - J
- IF( NOUNIT )
- $ X( JX ) = X( JX )/A( 1, J )
- TEMP = X( JX )
- DO 70, I = J + 1, MIN( N, J + K )
- X( IX ) = X( IX ) - TEMP*A( L + I, J )
- IX = IX + INCX
- 70 CONTINUE
- END IF
- JX = JX + INCX
- 80 CONTINUE
- END IF
- END IF
- ELSE
- C
- C Form x := inv( A' )*x or x := inv( conjg( A') )*x.
- C
- IF( LSAME( UPLO, 'U' ) )THEN
- KPLUS1 = K + 1
- IF( INCX.EQ.1 )THEN
- DO 110, J = 1, N
- TEMP = X( J )
- L = KPLUS1 - J
- IF( NOCONJ )THEN
- DO 90, I = MAX( 1, J - K ), J - 1
- TEMP = TEMP - A( L + I, J )*X( I )
- 90 CONTINUE
- IF( NOUNIT )
- $ TEMP = TEMP/A( KPLUS1, J )
- ELSE
- DO 100, I = MAX( 1, J - K ), J - 1
- TEMP = TEMP - CONJG( A( L + I, J ) )*X( I )
- 100 CONTINUE
- IF( NOUNIT )
- $ TEMP = TEMP/CONJG( A( KPLUS1, J ) )
- END IF
- X( J ) = TEMP
- 110 CONTINUE
- ELSE
- JX = KX
- DO 140, J = 1, N
- TEMP = X( JX )
- IX = KX
- L = KPLUS1 - J
- IF( NOCONJ )THEN
- DO 120, I = MAX( 1, J - K ), J - 1
- TEMP = TEMP - A( L + I, J )*X( IX )
- IX = IX + INCX
- 120 CONTINUE
- IF( NOUNIT )
- $ TEMP = TEMP/A( KPLUS1, J )
- ELSE
- DO 130, I = MAX( 1, J - K ), J - 1
- TEMP = TEMP - CONJG( A( L + I, J ) )*X( IX )
- IX = IX + INCX
- 130 CONTINUE
- IF( NOUNIT )
- $ TEMP = TEMP/CONJG( A( KPLUS1, J ) )
- END IF
- X( JX ) = TEMP
- JX = JX + INCX
- IF( J.GT.K )
- $ KX = KX + INCX
- 140 CONTINUE
- END IF
- ELSE
- IF( INCX.EQ.1 )THEN
- DO 170, J = N, 1, -1
- TEMP = X( J )
- L = 1 - J
- IF( NOCONJ )THEN
- DO 150, I = MIN( N, J + K ), J + 1, -1
- TEMP = TEMP - A( L + I, J )*X( I )
- 150 CONTINUE
- IF( NOUNIT )
- $ TEMP = TEMP/A( 1, J )
- ELSE
- DO 160, I = MIN( N, J + K ), J + 1, -1
- TEMP = TEMP - CONJG( A( L + I, J ) )*X( I )
- 160 CONTINUE
- IF( NOUNIT )
- $ TEMP = TEMP/CONJG( A( 1, J ) )
- END IF
- X( J ) = TEMP
- 170 CONTINUE
- ELSE
- KX = KX + ( N - 1 )*INCX
- JX = KX
- DO 200, J = N, 1, -1
- TEMP = X( JX )
- IX = KX
- L = 1 - J
- IF( NOCONJ )THEN
- DO 180, I = MIN( N, J + K ), J + 1, -1
- TEMP = TEMP - A( L + I, J )*X( IX )
- IX = IX - INCX
- 180 CONTINUE
- IF( NOUNIT )
- $ TEMP = TEMP/A( 1, J )
- ELSE
- DO 190, I = MIN( N, J + K ), J + 1, -1
- TEMP = TEMP - CONJG( A( L + I, J ) )*X( IX )
- IX = IX - INCX
- 190 CONTINUE
- IF( NOUNIT )
- $ TEMP = TEMP/CONJG( A( 1, J ) )
- END IF
- X( JX ) = TEMP
- JX = JX - INCX
- IF( ( N - J ).GE.K )
- $ KX = KX - INCX
- 200 CONTINUE
- END IF
- END IF
- END IF
- C
- RETURN
- C
- C End of CTBSV .
- C
- END
|