ctpsv.f 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348
  1. *DECK CTPSV
  2. SUBROUTINE CTPSV (UPLO, TRANS, DIAG, N, AP, X, INCX)
  3. C***BEGIN PROLOGUE CTPSV
  4. C***PURPOSE Solve one of the systems of equations.
  5. C***LIBRARY SLATEC (BLAS)
  6. C***CATEGORY D1B4
  7. C***TYPE COMPLEX (STPSV-S, DTPSV-D, CTPSV-C)
  8. C***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
  9. C***AUTHOR Dongarra, J. J., (ANL)
  10. C Du Croz, J., (NAG)
  11. C Hammarling, S., (NAG)
  12. C Hanson, R. J., (SNLA)
  13. C***DESCRIPTION
  14. C
  15. C CTPSV solves one of the systems of equations
  16. C
  17. C A*x = b, or A'*x = b, or conjg( A')*x = b,
  18. C
  19. C where b and x are n element vectors and A is an n by n unit, or
  20. C non-unit, upper or lower triangular matrix, supplied in packed form.
  21. C
  22. C No test for singularity or near-singularity is included in this
  23. C routine. Such tests must be performed before calling this routine.
  24. C
  25. C Parameters
  26. C ==========
  27. C
  28. C UPLO - CHARACTER*1.
  29. C On entry, UPLO specifies whether the matrix is an upper or
  30. C lower triangular matrix as follows:
  31. C
  32. C UPLO = 'U' or 'u' A is an upper triangular matrix.
  33. C
  34. C UPLO = 'L' or 'l' A is a lower triangular matrix.
  35. C
  36. C Unchanged on exit.
  37. C
  38. C TRANS - CHARACTER*1.
  39. C On entry, TRANS specifies the equations to be solved as
  40. C follows:
  41. C
  42. C TRANS = 'N' or 'n' A*x = b.
  43. C
  44. C TRANS = 'T' or 't' A'*x = b.
  45. C
  46. C TRANS = 'C' or 'c' conjg( A' )*x = b.
  47. C
  48. C Unchanged on exit.
  49. C
  50. C DIAG - CHARACTER*1.
  51. C On entry, DIAG specifies whether or not A is unit
  52. C triangular as follows:
  53. C
  54. C DIAG = 'U' or 'u' A is assumed to be unit triangular.
  55. C
  56. C DIAG = 'N' or 'n' A is not assumed to be unit
  57. C triangular.
  58. C
  59. C Unchanged on exit.
  60. C
  61. C N - INTEGER.
  62. C On entry, N specifies the order of the matrix A.
  63. C N must be at least zero.
  64. C Unchanged on exit.
  65. C
  66. C AP - COMPLEX array of DIMENSION at least
  67. C ( ( n*( n + 1 ) )/2 ).
  68. C Before entry with UPLO = 'U' or 'u', the array AP must
  69. C contain the upper triangular matrix packed sequentially,
  70. C column by column, so that AP( 1 ) contains a( 1, 1 ),
  71. C AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
  72. C respectively, and so on.
  73. C Before entry with UPLO = 'L' or 'l', the array AP must
  74. C contain the lower triangular matrix packed sequentially,
  75. C column by column, so that AP( 1 ) contains a( 1, 1 ),
  76. C AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
  77. C respectively, and so on.
  78. C Note that when DIAG = 'U' or 'u', the diagonal elements of
  79. C A are not referenced, but are assumed to be unity.
  80. C Unchanged on exit.
  81. C
  82. C X - COMPLEX array of dimension at least
  83. C ( 1 + ( n - 1 )*abs( INCX ) ).
  84. C Before entry, the incremented array X must contain the n
  85. C element right-hand side vector b. On exit, X is overwritten
  86. C with the solution vector x.
  87. C
  88. C INCX - INTEGER.
  89. C On entry, INCX specifies the increment for the elements of
  90. C X. INCX must not be zero.
  91. C Unchanged on exit.
  92. C
  93. C***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
  94. C Hanson, R. J. An extended set of Fortran basic linear
  95. C algebra subprograms. ACM TOMS, Vol. 14, No. 1,
  96. C pp. 1-17, March 1988.
  97. C***ROUTINES CALLED LSAME, XERBLA
  98. C***REVISION HISTORY (YYMMDD)
  99. C 861022 DATE WRITTEN
  100. C 910605 Modified to meet SLATEC prologue standards. Only comment
  101. C lines were modified. (BKS)
  102. C***END PROLOGUE CTPSV
  103. C .. Scalar Arguments ..
  104. INTEGER INCX, N
  105. CHARACTER*1 DIAG, TRANS, UPLO
  106. C .. Array Arguments ..
  107. COMPLEX AP( * ), X( * )
  108. C .. Parameters ..
  109. COMPLEX ZERO
  110. PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
  111. C .. Local Scalars ..
  112. COMPLEX TEMP
  113. INTEGER I, INFO, IX, J, JX, K, KK, KX
  114. LOGICAL NOCONJ, NOUNIT
  115. C .. External Functions ..
  116. LOGICAL LSAME
  117. EXTERNAL LSAME
  118. C .. External Subroutines ..
  119. EXTERNAL XERBLA
  120. C .. Intrinsic Functions ..
  121. INTRINSIC CONJG
  122. C***FIRST EXECUTABLE STATEMENT CTPSV
  123. C
  124. C Test the input parameters.
  125. C
  126. INFO = 0
  127. IF ( .NOT.LSAME( UPLO , 'U' ).AND.
  128. $ .NOT.LSAME( UPLO , 'L' ) )THEN
  129. INFO = 1
  130. ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND.
  131. $ .NOT.LSAME( TRANS, 'T' ).AND.
  132. $ .NOT.LSAME( TRANS, 'C' ) )THEN
  133. INFO = 2
  134. ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND.
  135. $ .NOT.LSAME( DIAG , 'N' ) )THEN
  136. INFO = 3
  137. ELSE IF( N.LT.0 )THEN
  138. INFO = 4
  139. ELSE IF( INCX.EQ.0 )THEN
  140. INFO = 7
  141. END IF
  142. IF( INFO.NE.0 )THEN
  143. CALL XERBLA( 'CTPSV ', INFO )
  144. RETURN
  145. END IF
  146. C
  147. C Quick return if possible.
  148. C
  149. IF( N.EQ.0 )
  150. $ RETURN
  151. C
  152. NOCONJ = LSAME( TRANS, 'T' )
  153. NOUNIT = LSAME( DIAG , 'N' )
  154. C
  155. C Set up the start point in X if the increment is not unity. This
  156. C will be ( N - 1 )*INCX too small for descending loops.
  157. C
  158. IF( INCX.LE.0 )THEN
  159. KX = 1 - ( N - 1 )*INCX
  160. ELSE IF( INCX.NE.1 )THEN
  161. KX = 1
  162. END IF
  163. C
  164. C Start the operations. In this version the elements of AP are
  165. C accessed sequentially with one pass through AP.
  166. C
  167. IF( LSAME( TRANS, 'N' ) )THEN
  168. C
  169. C Form x := inv( A )*x.
  170. C
  171. IF( LSAME( UPLO, 'U' ) )THEN
  172. KK = ( N*( N + 1 ) )/2
  173. IF( INCX.EQ.1 )THEN
  174. DO 20, J = N, 1, -1
  175. IF( X( J ).NE.ZERO )THEN
  176. IF( NOUNIT )
  177. $ X( J ) = X( J )/AP( KK )
  178. TEMP = X( J )
  179. K = KK - 1
  180. DO 10, I = J - 1, 1, -1
  181. X( I ) = X( I ) - TEMP*AP( K )
  182. K = K - 1
  183. 10 CONTINUE
  184. END IF
  185. KK = KK - J
  186. 20 CONTINUE
  187. ELSE
  188. JX = KX + ( N - 1 )*INCX
  189. DO 40, J = N, 1, -1
  190. IF( X( JX ).NE.ZERO )THEN
  191. IF( NOUNIT )
  192. $ X( JX ) = X( JX )/AP( KK )
  193. TEMP = X( JX )
  194. IX = JX
  195. DO 30, K = KK - 1, KK - J + 1, -1
  196. IX = IX - INCX
  197. X( IX ) = X( IX ) - TEMP*AP( K )
  198. 30 CONTINUE
  199. END IF
  200. JX = JX - INCX
  201. KK = KK - J
  202. 40 CONTINUE
  203. END IF
  204. ELSE
  205. KK = 1
  206. IF( INCX.EQ.1 )THEN
  207. DO 60, J = 1, N
  208. IF( X( J ).NE.ZERO )THEN
  209. IF( NOUNIT )
  210. $ X( J ) = X( J )/AP( KK )
  211. TEMP = X( J )
  212. K = KK + 1
  213. DO 50, I = J + 1, N
  214. X( I ) = X( I ) - TEMP*AP( K )
  215. K = K + 1
  216. 50 CONTINUE
  217. END IF
  218. KK = KK + ( N - J + 1 )
  219. 60 CONTINUE
  220. ELSE
  221. JX = KX
  222. DO 80, J = 1, N
  223. IF( X( JX ).NE.ZERO )THEN
  224. IF( NOUNIT )
  225. $ X( JX ) = X( JX )/AP( KK )
  226. TEMP = X( JX )
  227. IX = JX
  228. DO 70, K = KK + 1, KK + N - J
  229. IX = IX + INCX
  230. X( IX ) = X( IX ) - TEMP*AP( K )
  231. 70 CONTINUE
  232. END IF
  233. JX = JX + INCX
  234. KK = KK + ( N - J + 1 )
  235. 80 CONTINUE
  236. END IF
  237. END IF
  238. ELSE
  239. C
  240. C Form x := inv( A' )*x or x := inv( conjg( A' ) )*x.
  241. C
  242. IF( LSAME( UPLO, 'U' ) )THEN
  243. KK = 1
  244. IF( INCX.EQ.1 )THEN
  245. DO 110, J = 1, N
  246. TEMP = X( J )
  247. K = KK
  248. IF( NOCONJ )THEN
  249. DO 90, I = 1, J - 1
  250. TEMP = TEMP - AP( K )*X( I )
  251. K = K + 1
  252. 90 CONTINUE
  253. IF( NOUNIT )
  254. $ TEMP = TEMP/AP( KK + J - 1 )
  255. ELSE
  256. DO 100, I = 1, J - 1
  257. TEMP = TEMP - CONJG( AP( K ) )*X( I )
  258. K = K + 1
  259. 100 CONTINUE
  260. IF( NOUNIT )
  261. $ TEMP = TEMP/CONJG( AP( KK + J - 1 ) )
  262. END IF
  263. X( J ) = TEMP
  264. KK = KK + J
  265. 110 CONTINUE
  266. ELSE
  267. JX = KX
  268. DO 140, J = 1, N
  269. TEMP = X( JX )
  270. IX = KX
  271. IF( NOCONJ )THEN
  272. DO 120, K = KK, KK + J - 2
  273. TEMP = TEMP - AP( K )*X( IX )
  274. IX = IX + INCX
  275. 120 CONTINUE
  276. IF( NOUNIT )
  277. $ TEMP = TEMP/AP( KK + J - 1 )
  278. ELSE
  279. DO 130, K = KK, KK + J - 2
  280. TEMP = TEMP - CONJG( AP( K ) )*X( IX )
  281. IX = IX + INCX
  282. 130 CONTINUE
  283. IF( NOUNIT )
  284. $ TEMP = TEMP/CONJG( AP( KK + J - 1 ) )
  285. END IF
  286. X( JX ) = TEMP
  287. JX = JX + INCX
  288. KK = KK + J
  289. 140 CONTINUE
  290. END IF
  291. ELSE
  292. KK = ( N*( N + 1 ) )/2
  293. IF( INCX.EQ.1 )THEN
  294. DO 170, J = N, 1, -1
  295. TEMP = X( J )
  296. K = KK
  297. IF( NOCONJ )THEN
  298. DO 150, I = N, J + 1, -1
  299. TEMP = TEMP - AP( K )*X( I )
  300. K = K - 1
  301. 150 CONTINUE
  302. IF( NOUNIT )
  303. $ TEMP = TEMP/AP( KK - N + J )
  304. ELSE
  305. DO 160, I = N, J + 1, -1
  306. TEMP = TEMP - CONJG( AP( K ) )*X( I )
  307. K = K - 1
  308. 160 CONTINUE
  309. IF( NOUNIT )
  310. $ TEMP = TEMP/CONJG( AP( KK - N + J ) )
  311. END IF
  312. X( J ) = TEMP
  313. KK = KK - ( N - J + 1 )
  314. 170 CONTINUE
  315. ELSE
  316. KX = KX + ( N - 1 )*INCX
  317. JX = KX
  318. DO 200, J = N, 1, -1
  319. TEMP = X( JX )
  320. IX = KX
  321. IF( NOCONJ )THEN
  322. DO 180, K = KK, KK - ( N - ( J + 1 ) ), -1
  323. TEMP = TEMP - AP( K )*X( IX )
  324. IX = IX - INCX
  325. 180 CONTINUE
  326. IF( NOUNIT )
  327. $ TEMP = TEMP/AP( KK - N + J )
  328. ELSE
  329. DO 190, K = KK, KK - ( N - ( J + 1 ) ), -1
  330. TEMP = TEMP - CONJG( AP( K ) )*X( IX )
  331. IX = IX - INCX
  332. 190 CONTINUE
  333. IF( NOUNIT )
  334. $ TEMP = TEMP/CONJG( AP( KK - N + J ) )
  335. END IF
  336. X( JX ) = TEMP
  337. JX = JX - INCX
  338. KK = KK - ( N - J + 1 )
  339. 200 CONTINUE
  340. END IF
  341. END IF
  342. END IF
  343. C
  344. RETURN
  345. C
  346. C End of CTPSV .
  347. C
  348. END