123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179 |
- *DECK CTRCO
- SUBROUTINE CTRCO (T, LDT, N, RCOND, Z, JOB)
- C***BEGIN PROLOGUE CTRCO
- C***PURPOSE Estimate the condition number of a triangular matrix.
- C***LIBRARY SLATEC (LINPACK)
- C***CATEGORY D2C3
- C***TYPE COMPLEX (STRCO-S, DTRCO-D, CTRCO-C)
- C***KEYWORDS CONDITION NUMBER, LINEAR ALGEBRA, LINPACK,
- C TRIANGULAR MATRIX
- C***AUTHOR Moler, C. B., (U. of New Mexico)
- C***DESCRIPTION
- C
- C CTRCO estimates the condition of a complex triangular matrix.
- C
- C On Entry
- C
- C T COMPLEX(LDT,N)
- C T contains the triangular matrix. The zero
- C elements of the matrix are not referenced, and
- C the corresponding elements of the array can be
- C used to store other information.
- C
- C LDT INTEGER
- C LDT is the leading dimension of the array T.
- C
- C N INTEGER
- C N is the order of the system.
- C
- C JOB INTEGER
- C = 0 T is lower triangular.
- C = nonzero T is upper triangular.
- C
- C On Return
- C
- C RCOND REAL
- C an estimate of the reciprocal condition of T .
- C For the system T*X = B , relative perturbations
- C in T and B of size EPSILON may cause
- C relative perturbations in X of size EPSILON/RCOND .
- C If RCOND is so small that the logical expression
- C 1.0 + RCOND .EQ. 1.0
- C is true, then T may be singular to working
- C precision. In particular, RCOND is zero if
- C exact singularity is detected or the estimate
- C underflows.
- C
- C Z COMPLEX(N)
- C a work vector whose contents are usually unimportant.
- C If T is close to a singular matrix, then Z is
- C an approximate null vector in the sense that
- C NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .
- C
- C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
- C Stewart, LINPACK Users' Guide, SIAM, 1979.
- C***ROUTINES CALLED CAXPY, CSSCAL, SCASUM
- C***REVISION HISTORY (YYMMDD)
- C 780814 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890831 Modified array declarations. (WRB)
- C 890831 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 900326 Removed duplicate information from DESCRIPTION section.
- C (WRB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE CTRCO
- INTEGER LDT,N,JOB
- COMPLEX T(LDT,*),Z(*)
- REAL RCOND
- C
- COMPLEX W,WK,WKM,EK
- REAL TNORM,YNORM,S,SM,SCASUM
- INTEGER I1,J,J1,J2,K,KK,L
- LOGICAL LOWER
- COMPLEX ZDUM,ZDUM1,ZDUM2,CSIGN1
- REAL CABS1
- CABS1(ZDUM) = ABS(REAL(ZDUM)) + ABS(AIMAG(ZDUM))
- CSIGN1(ZDUM1,ZDUM2) = CABS1(ZDUM1)*(ZDUM2/CABS1(ZDUM2))
- C
- C***FIRST EXECUTABLE STATEMENT CTRCO
- LOWER = JOB .EQ. 0
- C
- C COMPUTE 1-NORM OF T
- C
- TNORM = 0.0E0
- DO 10 J = 1, N
- L = J
- IF (LOWER) L = N + 1 - J
- I1 = 1
- IF (LOWER) I1 = J
- TNORM = MAX(TNORM,SCASUM(L,T(I1,J),1))
- 10 CONTINUE
- C
- C RCOND = 1/(NORM(T)*(ESTIMATE OF NORM(INVERSE(T)))) .
- C ESTIMATE = NORM(Z)/NORM(Y) WHERE T*Z = Y AND CTRANS(T)*Y = E .
- C CTRANS(T) IS THE CONJUGATE TRANSPOSE OF T .
- C THE COMPONENTS OF E ARE CHOSEN TO CAUSE MAXIMUM LOCAL
- C GROWTH IN THE ELEMENTS OF Y .
- C THE VECTORS ARE FREQUENTLY RESCALED TO AVOID OVERFLOW.
- C
- C SOLVE CTRANS(T)*Y = E
- C
- EK = (1.0E0,0.0E0)
- DO 20 J = 1, N
- Z(J) = (0.0E0,0.0E0)
- 20 CONTINUE
- DO 100 KK = 1, N
- K = KK
- IF (LOWER) K = N + 1 - KK
- IF (CABS1(Z(K)) .NE. 0.0E0) EK = CSIGN1(EK,-Z(K))
- IF (CABS1(EK-Z(K)) .LE. CABS1(T(K,K))) GO TO 30
- S = CABS1(T(K,K))/CABS1(EK-Z(K))
- CALL CSSCAL(N,S,Z,1)
- EK = CMPLX(S,0.0E0)*EK
- 30 CONTINUE
- WK = EK - Z(K)
- WKM = -EK - Z(K)
- S = CABS1(WK)
- SM = CABS1(WKM)
- IF (CABS1(T(K,K)) .EQ. 0.0E0) GO TO 40
- WK = WK/CONJG(T(K,K))
- WKM = WKM/CONJG(T(K,K))
- GO TO 50
- 40 CONTINUE
- WK = (1.0E0,0.0E0)
- WKM = (1.0E0,0.0E0)
- 50 CONTINUE
- IF (KK .EQ. N) GO TO 90
- J1 = K + 1
- IF (LOWER) J1 = 1
- J2 = N
- IF (LOWER) J2 = K - 1
- DO 60 J = J1, J2
- SM = SM + CABS1(Z(J)+WKM*CONJG(T(K,J)))
- Z(J) = Z(J) + WK*CONJG(T(K,J))
- S = S + CABS1(Z(J))
- 60 CONTINUE
- IF (S .GE. SM) GO TO 80
- W = WKM - WK
- WK = WKM
- DO 70 J = J1, J2
- Z(J) = Z(J) + W*CONJG(T(K,J))
- 70 CONTINUE
- 80 CONTINUE
- 90 CONTINUE
- Z(K) = WK
- 100 CONTINUE
- S = 1.0E0/SCASUM(N,Z,1)
- CALL CSSCAL(N,S,Z,1)
- C
- YNORM = 1.0E0
- C
- C SOLVE T*Z = Y
- C
- DO 130 KK = 1, N
- K = N + 1 - KK
- IF (LOWER) K = KK
- IF (CABS1(Z(K)) .LE. CABS1(T(K,K))) GO TO 110
- S = CABS1(T(K,K))/CABS1(Z(K))
- CALL CSSCAL(N,S,Z,1)
- YNORM = S*YNORM
- 110 CONTINUE
- IF (CABS1(T(K,K)) .NE. 0.0E0) Z(K) = Z(K)/T(K,K)
- IF (CABS1(T(K,K)) .EQ. 0.0E0) Z(K) = (1.0E0,0.0E0)
- I1 = 1
- IF (LOWER) I1 = K + 1
- IF (KK .GE. N) GO TO 120
- W = -Z(K)
- CALL CAXPY(N-KK,W,T(I1,K),1,Z(I1),1)
- 120 CONTINUE
- 130 CONTINUE
- C MAKE ZNORM = 1.0
- S = 1.0E0/SCASUM(N,Z,1)
- CALL CSSCAL(N,S,Z,1)
- YNORM = S*YNORM
- C
- IF (TNORM .NE. 0.0E0) RCOND = YNORM/TNORM
- IF (TNORM .EQ. 0.0E0) RCOND = 0.0E0
- RETURN
- END
|