ctrmm.f 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399
  1. *DECK CTRMM
  2. SUBROUTINE CTRMM (SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA,
  3. $ B, LDB)
  4. C***BEGIN PROLOGUE CTRMM
  5. C***PURPOSE Multiply a complex general matrix by a complex triangular
  6. C matrix.
  7. C***LIBRARY SLATEC (BLAS)
  8. C***CATEGORY D1B6
  9. C***TYPE COMPLEX (STRMM-S, DTRMM-D, CTRMM-C)
  10. C***KEYWORDS LEVEL 3 BLAS, LINEAR ALGEBRA
  11. C***AUTHOR Dongarra, J., (ANL)
  12. C Duff, I., (AERE)
  13. C Du Croz, J., (NAG)
  14. C Hammarling, S. (NAG)
  15. C***DESCRIPTION
  16. C
  17. C CTRMM performs one of the matrix-matrix operations
  18. C
  19. C B := alpha*op( A )*B, or B := alpha*B*op( A )
  20. C
  21. C where alpha is a scalar, B is an m by n matrix, A is a unit, or
  22. C non-unit, upper or lower triangular matrix and op( A ) is one of
  23. C
  24. C op( A ) = A or op( A ) = A' or op( A ) = conjg( A' ).
  25. C
  26. C Parameters
  27. C ==========
  28. C
  29. C SIDE - CHARACTER*1.
  30. C On entry, SIDE specifies whether op( A ) multiplies B from
  31. C the left or right as follows:
  32. C
  33. C SIDE = 'L' or 'l' B := alpha*op( A )*B.
  34. C
  35. C SIDE = 'R' or 'r' B := alpha*B*op( A ).
  36. C
  37. C Unchanged on exit.
  38. C
  39. C UPLO - CHARACTER*1.
  40. C On entry, UPLO specifies whether the matrix A is an upper or
  41. C lower triangular matrix as follows:
  42. C
  43. C UPLO = 'U' or 'u' A is an upper triangular matrix.
  44. C
  45. C UPLO = 'L' or 'l' A is a lower triangular matrix.
  46. C
  47. C Unchanged on exit.
  48. C
  49. C TRANSA - CHARACTER*1.
  50. C On entry, TRANSA specifies the form of op( A ) to be used in
  51. C the matrix multiplication as follows:
  52. C
  53. C TRANSA = 'N' or 'n' op( A ) = A.
  54. C
  55. C TRANSA = 'T' or 't' op( A ) = A'.
  56. C
  57. C TRANSA = 'C' or 'c' op( A ) = conjg( A' ).
  58. C
  59. C Unchanged on exit.
  60. C
  61. C DIAG - CHARACTER*1.
  62. C On entry, DIAG specifies whether or not A is unit triangular
  63. C as follows:
  64. C
  65. C DIAG = 'U' or 'u' A is assumed to be unit triangular.
  66. C
  67. C DIAG = 'N' or 'n' A is not assumed to be unit
  68. C triangular.
  69. C
  70. C Unchanged on exit.
  71. C
  72. C M - INTEGER.
  73. C On entry, M specifies the number of rows of B. M must be at
  74. C least zero.
  75. C Unchanged on exit.
  76. C
  77. C N - INTEGER.
  78. C On entry, N specifies the number of columns of B. N must be
  79. C at least zero.
  80. C Unchanged on exit.
  81. C
  82. C ALPHA - COMPLEX .
  83. C On entry, ALPHA specifies the scalar alpha. When alpha is
  84. C zero then A is not referenced and B need not be set before
  85. C entry.
  86. C Unchanged on exit.
  87. C
  88. C A - COMPLEX array of DIMENSION ( LDA, k ), where k is m
  89. C when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'.
  90. C Before entry with UPLO = 'U' or 'u', the leading k by k
  91. C upper triangular part of the array A must contain the upper
  92. C triangular matrix and the strictly lower triangular part of
  93. C A is not referenced.
  94. C Before entry with UPLO = 'L' or 'l', the leading k by k
  95. C lower triangular part of the array A must contain the lower
  96. C triangular matrix and the strictly upper triangular part of
  97. C A is not referenced.
  98. C Note that when DIAG = 'U' or 'u', the diagonal elements of
  99. C A are not referenced either, but are assumed to be unity.
  100. C Unchanged on exit.
  101. C
  102. C LDA - INTEGER.
  103. C On entry, LDA specifies the first dimension of A as declared
  104. C in the calling (sub) program. When SIDE = 'L' or 'l' then
  105. C LDA must be at least max( 1, m ), when SIDE = 'R' or 'r'
  106. C then LDA must be at least max( 1, n ).
  107. C Unchanged on exit.
  108. C
  109. C B - COMPLEX array of DIMENSION ( LDB, n ).
  110. C Before entry, the leading m by n part of the array B must
  111. C contain the matrix B, and on exit is overwritten by the
  112. C transformed matrix.
  113. C
  114. C LDB - INTEGER.
  115. C On entry, LDB specifies the first dimension of B as declared
  116. C in the calling (sub) program. LDB must be at least
  117. C max( 1, m ).
  118. C Unchanged on exit.
  119. C
  120. C***REFERENCES Dongarra, J., Du Croz, J., Duff, I., and Hammarling, S.
  121. C A set of level 3 basic linear algebra subprograms.
  122. C ACM TOMS, Vol. 16, No. 1, pp. 1-17, March 1990.
  123. C***ROUTINES CALLED LSAME, XERBLA
  124. C***REVISION HISTORY (YYMMDD)
  125. C 890208 DATE WRITTEN
  126. C 910605 Modified to meet SLATEC prologue standards. Only comment
  127. C lines were modified. (BKS)
  128. C***END PROLOGUE CTRMM
  129. C .. Scalar Arguments ..
  130. CHARACTER*1 SIDE, UPLO, TRANSA, DIAG
  131. INTEGER M, N, LDA, LDB
  132. COMPLEX ALPHA
  133. C .. Array Arguments ..
  134. COMPLEX A( LDA, * ), B( LDB, * )
  135. C .. External Functions ..
  136. LOGICAL LSAME
  137. EXTERNAL LSAME
  138. C .. External Subroutines ..
  139. EXTERNAL XERBLA
  140. C .. Intrinsic Functions ..
  141. INTRINSIC CONJG, MAX
  142. C .. Local Scalars ..
  143. LOGICAL LSIDE, NOCONJ, NOUNIT, UPPER
  144. INTEGER I, INFO, J, K, NROWA
  145. COMPLEX TEMP
  146. C .. Parameters ..
  147. COMPLEX ONE
  148. PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
  149. COMPLEX ZERO
  150. PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
  151. C***FIRST EXECUTABLE STATEMENT CTRMM
  152. C
  153. C Test the input parameters.
  154. C
  155. LSIDE = LSAME( SIDE , 'L' )
  156. IF( LSIDE )THEN
  157. NROWA = M
  158. ELSE
  159. NROWA = N
  160. END IF
  161. NOCONJ = LSAME( TRANSA, 'T' )
  162. NOUNIT = LSAME( DIAG , 'N' )
  163. UPPER = LSAME( UPLO , 'U' )
  164. C
  165. INFO = 0
  166. IF( ( .NOT.LSIDE ).AND.
  167. $ ( .NOT.LSAME( SIDE , 'R' ) ) )THEN
  168. INFO = 1
  169. ELSE IF( ( .NOT.UPPER ).AND.
  170. $ ( .NOT.LSAME( UPLO , 'L' ) ) )THEN
  171. INFO = 2
  172. ELSE IF( ( .NOT.LSAME( TRANSA, 'N' ) ).AND.
  173. $ ( .NOT.LSAME( TRANSA, 'T' ) ).AND.
  174. $ ( .NOT.LSAME( TRANSA, 'C' ) ) )THEN
  175. INFO = 3
  176. ELSE IF( ( .NOT.LSAME( DIAG , 'U' ) ).AND.
  177. $ ( .NOT.LSAME( DIAG , 'N' ) ) )THEN
  178. INFO = 4
  179. ELSE IF( M .LT.0 )THEN
  180. INFO = 5
  181. ELSE IF( N .LT.0 )THEN
  182. INFO = 6
  183. ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
  184. INFO = 9
  185. ELSE IF( LDB.LT.MAX( 1, M ) )THEN
  186. INFO = 11
  187. END IF
  188. IF( INFO.NE.0 )THEN
  189. CALL XERBLA( 'CTRMM ', INFO )
  190. RETURN
  191. END IF
  192. C
  193. C Quick return if possible.
  194. C
  195. IF( N.EQ.0 )
  196. $ RETURN
  197. C
  198. C And when alpha.eq.zero.
  199. C
  200. IF( ALPHA.EQ.ZERO )THEN
  201. DO 20, J = 1, N
  202. DO 10, I = 1, M
  203. B( I, J ) = ZERO
  204. 10 CONTINUE
  205. 20 CONTINUE
  206. RETURN
  207. END IF
  208. C
  209. C Start the operations.
  210. C
  211. IF( LSIDE )THEN
  212. IF( LSAME( TRANSA, 'N' ) )THEN
  213. C
  214. C Form B := alpha*A*B.
  215. C
  216. IF( UPPER )THEN
  217. DO 50, J = 1, N
  218. DO 40, K = 1, M
  219. IF( B( K, J ).NE.ZERO )THEN
  220. TEMP = ALPHA*B( K, J )
  221. DO 30, I = 1, K - 1
  222. B( I, J ) = B( I, J ) + TEMP*A( I, K )
  223. 30 CONTINUE
  224. IF( NOUNIT )
  225. $ TEMP = TEMP*A( K, K )
  226. B( K, J ) = TEMP
  227. END IF
  228. 40 CONTINUE
  229. 50 CONTINUE
  230. ELSE
  231. DO 80, J = 1, N
  232. DO 70 K = M, 1, -1
  233. IF( B( K, J ).NE.ZERO )THEN
  234. TEMP = ALPHA*B( K, J )
  235. B( K, J ) = TEMP
  236. IF( NOUNIT )
  237. $ B( K, J ) = B( K, J )*A( K, K )
  238. DO 60, I = K + 1, M
  239. B( I, J ) = B( I, J ) + TEMP*A( I, K )
  240. 60 CONTINUE
  241. END IF
  242. 70 CONTINUE
  243. 80 CONTINUE
  244. END IF
  245. ELSE
  246. C
  247. C Form B := alpha*B*A' or B := alpha*B*conjg( A' ).
  248. C
  249. IF( UPPER )THEN
  250. DO 120, J = 1, N
  251. DO 110, I = M, 1, -1
  252. TEMP = B( I, J )
  253. IF( NOCONJ )THEN
  254. IF( NOUNIT )
  255. $ TEMP = TEMP*A( I, I )
  256. DO 90, K = 1, I - 1
  257. TEMP = TEMP + A( K, I )*B( K, J )
  258. 90 CONTINUE
  259. ELSE
  260. IF( NOUNIT )
  261. $ TEMP = TEMP*CONJG( A( I, I ) )
  262. DO 100, K = 1, I - 1
  263. TEMP = TEMP + CONJG( A( K, I ) )*B( K, J )
  264. 100 CONTINUE
  265. END IF
  266. B( I, J ) = ALPHA*TEMP
  267. 110 CONTINUE
  268. 120 CONTINUE
  269. ELSE
  270. DO 160, J = 1, N
  271. DO 150, I = 1, M
  272. TEMP = B( I, J )
  273. IF( NOCONJ )THEN
  274. IF( NOUNIT )
  275. $ TEMP = TEMP*A( I, I )
  276. DO 130, K = I + 1, M
  277. TEMP = TEMP + A( K, I )*B( K, J )
  278. 130 CONTINUE
  279. ELSE
  280. IF( NOUNIT )
  281. $ TEMP = TEMP*CONJG( A( I, I ) )
  282. DO 140, K = I + 1, M
  283. TEMP = TEMP + CONJG( A( K, I ) )*B( K, J )
  284. 140 CONTINUE
  285. END IF
  286. B( I, J ) = ALPHA*TEMP
  287. 150 CONTINUE
  288. 160 CONTINUE
  289. END IF
  290. END IF
  291. ELSE
  292. IF( LSAME( TRANSA, 'N' ) )THEN
  293. C
  294. C Form B := alpha*B*A.
  295. C
  296. IF( UPPER )THEN
  297. DO 200, J = N, 1, -1
  298. TEMP = ALPHA
  299. IF( NOUNIT )
  300. $ TEMP = TEMP*A( J, J )
  301. DO 170, I = 1, M
  302. B( I, J ) = TEMP*B( I, J )
  303. 170 CONTINUE
  304. DO 190, K = 1, J - 1
  305. IF( A( K, J ).NE.ZERO )THEN
  306. TEMP = ALPHA*A( K, J )
  307. DO 180, I = 1, M
  308. B( I, J ) = B( I, J ) + TEMP*B( I, K )
  309. 180 CONTINUE
  310. END IF
  311. 190 CONTINUE
  312. 200 CONTINUE
  313. ELSE
  314. DO 240, J = 1, N
  315. TEMP = ALPHA
  316. IF( NOUNIT )
  317. $ TEMP = TEMP*A( J, J )
  318. DO 210, I = 1, M
  319. B( I, J ) = TEMP*B( I, J )
  320. 210 CONTINUE
  321. DO 230, K = J + 1, N
  322. IF( A( K, J ).NE.ZERO )THEN
  323. TEMP = ALPHA*A( K, J )
  324. DO 220, I = 1, M
  325. B( I, J ) = B( I, J ) + TEMP*B( I, K )
  326. 220 CONTINUE
  327. END IF
  328. 230 CONTINUE
  329. 240 CONTINUE
  330. END IF
  331. ELSE
  332. C
  333. C Form B := alpha*B*A' or B := alpha*B*conjg( A' ).
  334. C
  335. IF( UPPER )THEN
  336. DO 280, K = 1, N
  337. DO 260, J = 1, K - 1
  338. IF( A( J, K ).NE.ZERO )THEN
  339. IF( NOCONJ )THEN
  340. TEMP = ALPHA*A( J, K )
  341. ELSE
  342. TEMP = ALPHA*CONJG( A( J, K ) )
  343. END IF
  344. DO 250, I = 1, M
  345. B( I, J ) = B( I, J ) + TEMP*B( I, K )
  346. 250 CONTINUE
  347. END IF
  348. 260 CONTINUE
  349. TEMP = ALPHA
  350. IF( NOUNIT )THEN
  351. IF( NOCONJ )THEN
  352. TEMP = TEMP*A( K, K )
  353. ELSE
  354. TEMP = TEMP*CONJG( A( K, K ) )
  355. END IF
  356. END IF
  357. IF( TEMP.NE.ONE )THEN
  358. DO 270, I = 1, M
  359. B( I, K ) = TEMP*B( I, K )
  360. 270 CONTINUE
  361. END IF
  362. 280 CONTINUE
  363. ELSE
  364. DO 320, K = N, 1, -1
  365. DO 300, J = K + 1, N
  366. IF( A( J, K ).NE.ZERO )THEN
  367. IF( NOCONJ )THEN
  368. TEMP = ALPHA*A( J, K )
  369. ELSE
  370. TEMP = ALPHA*CONJG( A( J, K ) )
  371. END IF
  372. DO 290, I = 1, M
  373. B( I, J ) = B( I, J ) + TEMP*B( I, K )
  374. 290 CONTINUE
  375. END IF
  376. 300 CONTINUE
  377. TEMP = ALPHA
  378. IF( NOUNIT )THEN
  379. IF( NOCONJ )THEN
  380. TEMP = TEMP*A( K, K )
  381. ELSE
  382. TEMP = TEMP*CONJG( A( K, K ) )
  383. END IF
  384. END IF
  385. IF( TEMP.NE.ONE )THEN
  386. DO 310, I = 1, M
  387. B( I, K ) = TEMP*B( I, K )
  388. 310 CONTINUE
  389. END IF
  390. 320 CONTINUE
  391. END IF
  392. END IF
  393. END IF
  394. C
  395. RETURN
  396. C
  397. C End of CTRMM .
  398. C
  399. END