123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399 |
- *DECK CTRMM
- SUBROUTINE CTRMM (SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA,
- $ B, LDB)
- C***BEGIN PROLOGUE CTRMM
- C***PURPOSE Multiply a complex general matrix by a complex triangular
- C matrix.
- C***LIBRARY SLATEC (BLAS)
- C***CATEGORY D1B6
- C***TYPE COMPLEX (STRMM-S, DTRMM-D, CTRMM-C)
- C***KEYWORDS LEVEL 3 BLAS, LINEAR ALGEBRA
- C***AUTHOR Dongarra, J., (ANL)
- C Duff, I., (AERE)
- C Du Croz, J., (NAG)
- C Hammarling, S. (NAG)
- C***DESCRIPTION
- C
- C CTRMM performs one of the matrix-matrix operations
- C
- C B := alpha*op( A )*B, or B := alpha*B*op( A )
- C
- C where alpha is a scalar, B is an m by n matrix, A is a unit, or
- C non-unit, upper or lower triangular matrix and op( A ) is one of
- C
- C op( A ) = A or op( A ) = A' or op( A ) = conjg( A' ).
- C
- C Parameters
- C ==========
- C
- C SIDE - CHARACTER*1.
- C On entry, SIDE specifies whether op( A ) multiplies B from
- C the left or right as follows:
- C
- C SIDE = 'L' or 'l' B := alpha*op( A )*B.
- C
- C SIDE = 'R' or 'r' B := alpha*B*op( A ).
- C
- C Unchanged on exit.
- C
- C UPLO - CHARACTER*1.
- C On entry, UPLO specifies whether the matrix A is an upper or
- C lower triangular matrix as follows:
- C
- C UPLO = 'U' or 'u' A is an upper triangular matrix.
- C
- C UPLO = 'L' or 'l' A is a lower triangular matrix.
- C
- C Unchanged on exit.
- C
- C TRANSA - CHARACTER*1.
- C On entry, TRANSA specifies the form of op( A ) to be used in
- C the matrix multiplication as follows:
- C
- C TRANSA = 'N' or 'n' op( A ) = A.
- C
- C TRANSA = 'T' or 't' op( A ) = A'.
- C
- C TRANSA = 'C' or 'c' op( A ) = conjg( A' ).
- C
- C Unchanged on exit.
- C
- C DIAG - CHARACTER*1.
- C On entry, DIAG specifies whether or not A is unit triangular
- C as follows:
- C
- C DIAG = 'U' or 'u' A is assumed to be unit triangular.
- C
- C DIAG = 'N' or 'n' A is not assumed to be unit
- C triangular.
- C
- C Unchanged on exit.
- C
- C M - INTEGER.
- C On entry, M specifies the number of rows of B. M must be at
- C least zero.
- C Unchanged on exit.
- C
- C N - INTEGER.
- C On entry, N specifies the number of columns of B. N must be
- C at least zero.
- C Unchanged on exit.
- C
- C ALPHA - COMPLEX .
- C On entry, ALPHA specifies the scalar alpha. When alpha is
- C zero then A is not referenced and B need not be set before
- C entry.
- C Unchanged on exit.
- C
- C A - COMPLEX array of DIMENSION ( LDA, k ), where k is m
- C when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'.
- C Before entry with UPLO = 'U' or 'u', the leading k by k
- C upper triangular part of the array A must contain the upper
- C triangular matrix and the strictly lower triangular part of
- C A is not referenced.
- C Before entry with UPLO = 'L' or 'l', the leading k by k
- C lower triangular part of the array A must contain the lower
- C triangular matrix and the strictly upper triangular part of
- C A is not referenced.
- C Note that when DIAG = 'U' or 'u', the diagonal elements of
- C A are not referenced either, but are assumed to be unity.
- C Unchanged on exit.
- C
- C LDA - INTEGER.
- C On entry, LDA specifies the first dimension of A as declared
- C in the calling (sub) program. When SIDE = 'L' or 'l' then
- C LDA must be at least max( 1, m ), when SIDE = 'R' or 'r'
- C then LDA must be at least max( 1, n ).
- C Unchanged on exit.
- C
- C B - COMPLEX array of DIMENSION ( LDB, n ).
- C Before entry, the leading m by n part of the array B must
- C contain the matrix B, and on exit is overwritten by the
- C transformed matrix.
- C
- C LDB - INTEGER.
- C On entry, LDB specifies the first dimension of B as declared
- C in the calling (sub) program. LDB must be at least
- C max( 1, m ).
- C Unchanged on exit.
- C
- C***REFERENCES Dongarra, J., Du Croz, J., Duff, I., and Hammarling, S.
- C A set of level 3 basic linear algebra subprograms.
- C ACM TOMS, Vol. 16, No. 1, pp. 1-17, March 1990.
- C***ROUTINES CALLED LSAME, XERBLA
- C***REVISION HISTORY (YYMMDD)
- C 890208 DATE WRITTEN
- C 910605 Modified to meet SLATEC prologue standards. Only comment
- C lines were modified. (BKS)
- C***END PROLOGUE CTRMM
- C .. Scalar Arguments ..
- CHARACTER*1 SIDE, UPLO, TRANSA, DIAG
- INTEGER M, N, LDA, LDB
- COMPLEX ALPHA
- C .. Array Arguments ..
- COMPLEX A( LDA, * ), B( LDB, * )
- C .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- C .. External Subroutines ..
- EXTERNAL XERBLA
- C .. Intrinsic Functions ..
- INTRINSIC CONJG, MAX
- C .. Local Scalars ..
- LOGICAL LSIDE, NOCONJ, NOUNIT, UPPER
- INTEGER I, INFO, J, K, NROWA
- COMPLEX TEMP
- C .. Parameters ..
- COMPLEX ONE
- PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
- COMPLEX ZERO
- PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
- C***FIRST EXECUTABLE STATEMENT CTRMM
- C
- C Test the input parameters.
- C
- LSIDE = LSAME( SIDE , 'L' )
- IF( LSIDE )THEN
- NROWA = M
- ELSE
- NROWA = N
- END IF
- NOCONJ = LSAME( TRANSA, 'T' )
- NOUNIT = LSAME( DIAG , 'N' )
- UPPER = LSAME( UPLO , 'U' )
- C
- INFO = 0
- IF( ( .NOT.LSIDE ).AND.
- $ ( .NOT.LSAME( SIDE , 'R' ) ) )THEN
- INFO = 1
- ELSE IF( ( .NOT.UPPER ).AND.
- $ ( .NOT.LSAME( UPLO , 'L' ) ) )THEN
- INFO = 2
- ELSE IF( ( .NOT.LSAME( TRANSA, 'N' ) ).AND.
- $ ( .NOT.LSAME( TRANSA, 'T' ) ).AND.
- $ ( .NOT.LSAME( TRANSA, 'C' ) ) )THEN
- INFO = 3
- ELSE IF( ( .NOT.LSAME( DIAG , 'U' ) ).AND.
- $ ( .NOT.LSAME( DIAG , 'N' ) ) )THEN
- INFO = 4
- ELSE IF( M .LT.0 )THEN
- INFO = 5
- ELSE IF( N .LT.0 )THEN
- INFO = 6
- ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
- INFO = 9
- ELSE IF( LDB.LT.MAX( 1, M ) )THEN
- INFO = 11
- END IF
- IF( INFO.NE.0 )THEN
- CALL XERBLA( 'CTRMM ', INFO )
- RETURN
- END IF
- C
- C Quick return if possible.
- C
- IF( N.EQ.0 )
- $ RETURN
- C
- C And when alpha.eq.zero.
- C
- IF( ALPHA.EQ.ZERO )THEN
- DO 20, J = 1, N
- DO 10, I = 1, M
- B( I, J ) = ZERO
- 10 CONTINUE
- 20 CONTINUE
- RETURN
- END IF
- C
- C Start the operations.
- C
- IF( LSIDE )THEN
- IF( LSAME( TRANSA, 'N' ) )THEN
- C
- C Form B := alpha*A*B.
- C
- IF( UPPER )THEN
- DO 50, J = 1, N
- DO 40, K = 1, M
- IF( B( K, J ).NE.ZERO )THEN
- TEMP = ALPHA*B( K, J )
- DO 30, I = 1, K - 1
- B( I, J ) = B( I, J ) + TEMP*A( I, K )
- 30 CONTINUE
- IF( NOUNIT )
- $ TEMP = TEMP*A( K, K )
- B( K, J ) = TEMP
- END IF
- 40 CONTINUE
- 50 CONTINUE
- ELSE
- DO 80, J = 1, N
- DO 70 K = M, 1, -1
- IF( B( K, J ).NE.ZERO )THEN
- TEMP = ALPHA*B( K, J )
- B( K, J ) = TEMP
- IF( NOUNIT )
- $ B( K, J ) = B( K, J )*A( K, K )
- DO 60, I = K + 1, M
- B( I, J ) = B( I, J ) + TEMP*A( I, K )
- 60 CONTINUE
- END IF
- 70 CONTINUE
- 80 CONTINUE
- END IF
- ELSE
- C
- C Form B := alpha*B*A' or B := alpha*B*conjg( A' ).
- C
- IF( UPPER )THEN
- DO 120, J = 1, N
- DO 110, I = M, 1, -1
- TEMP = B( I, J )
- IF( NOCONJ )THEN
- IF( NOUNIT )
- $ TEMP = TEMP*A( I, I )
- DO 90, K = 1, I - 1
- TEMP = TEMP + A( K, I )*B( K, J )
- 90 CONTINUE
- ELSE
- IF( NOUNIT )
- $ TEMP = TEMP*CONJG( A( I, I ) )
- DO 100, K = 1, I - 1
- TEMP = TEMP + CONJG( A( K, I ) )*B( K, J )
- 100 CONTINUE
- END IF
- B( I, J ) = ALPHA*TEMP
- 110 CONTINUE
- 120 CONTINUE
- ELSE
- DO 160, J = 1, N
- DO 150, I = 1, M
- TEMP = B( I, J )
- IF( NOCONJ )THEN
- IF( NOUNIT )
- $ TEMP = TEMP*A( I, I )
- DO 130, K = I + 1, M
- TEMP = TEMP + A( K, I )*B( K, J )
- 130 CONTINUE
- ELSE
- IF( NOUNIT )
- $ TEMP = TEMP*CONJG( A( I, I ) )
- DO 140, K = I + 1, M
- TEMP = TEMP + CONJG( A( K, I ) )*B( K, J )
- 140 CONTINUE
- END IF
- B( I, J ) = ALPHA*TEMP
- 150 CONTINUE
- 160 CONTINUE
- END IF
- END IF
- ELSE
- IF( LSAME( TRANSA, 'N' ) )THEN
- C
- C Form B := alpha*B*A.
- C
- IF( UPPER )THEN
- DO 200, J = N, 1, -1
- TEMP = ALPHA
- IF( NOUNIT )
- $ TEMP = TEMP*A( J, J )
- DO 170, I = 1, M
- B( I, J ) = TEMP*B( I, J )
- 170 CONTINUE
- DO 190, K = 1, J - 1
- IF( A( K, J ).NE.ZERO )THEN
- TEMP = ALPHA*A( K, J )
- DO 180, I = 1, M
- B( I, J ) = B( I, J ) + TEMP*B( I, K )
- 180 CONTINUE
- END IF
- 190 CONTINUE
- 200 CONTINUE
- ELSE
- DO 240, J = 1, N
- TEMP = ALPHA
- IF( NOUNIT )
- $ TEMP = TEMP*A( J, J )
- DO 210, I = 1, M
- B( I, J ) = TEMP*B( I, J )
- 210 CONTINUE
- DO 230, K = J + 1, N
- IF( A( K, J ).NE.ZERO )THEN
- TEMP = ALPHA*A( K, J )
- DO 220, I = 1, M
- B( I, J ) = B( I, J ) + TEMP*B( I, K )
- 220 CONTINUE
- END IF
- 230 CONTINUE
- 240 CONTINUE
- END IF
- ELSE
- C
- C Form B := alpha*B*A' or B := alpha*B*conjg( A' ).
- C
- IF( UPPER )THEN
- DO 280, K = 1, N
- DO 260, J = 1, K - 1
- IF( A( J, K ).NE.ZERO )THEN
- IF( NOCONJ )THEN
- TEMP = ALPHA*A( J, K )
- ELSE
- TEMP = ALPHA*CONJG( A( J, K ) )
- END IF
- DO 250, I = 1, M
- B( I, J ) = B( I, J ) + TEMP*B( I, K )
- 250 CONTINUE
- END IF
- 260 CONTINUE
- TEMP = ALPHA
- IF( NOUNIT )THEN
- IF( NOCONJ )THEN
- TEMP = TEMP*A( K, K )
- ELSE
- TEMP = TEMP*CONJG( A( K, K ) )
- END IF
- END IF
- IF( TEMP.NE.ONE )THEN
- DO 270, I = 1, M
- B( I, K ) = TEMP*B( I, K )
- 270 CONTINUE
- END IF
- 280 CONTINUE
- ELSE
- DO 320, K = N, 1, -1
- DO 300, J = K + 1, N
- IF( A( J, K ).NE.ZERO )THEN
- IF( NOCONJ )THEN
- TEMP = ALPHA*A( J, K )
- ELSE
- TEMP = ALPHA*CONJG( A( J, K ) )
- END IF
- DO 290, I = 1, M
- B( I, J ) = B( I, J ) + TEMP*B( I, K )
- 290 CONTINUE
- END IF
- 300 CONTINUE
- TEMP = ALPHA
- IF( NOUNIT )THEN
- IF( NOCONJ )THEN
- TEMP = TEMP*A( K, K )
- ELSE
- TEMP = TEMP*CONJG( A( K, K ) )
- END IF
- END IF
- IF( TEMP.NE.ONE )THEN
- DO 310, I = 1, M
- B( I, K ) = TEMP*B( I, K )
- 310 CONTINUE
- END IF
- 320 CONTINUE
- END IF
- END IF
- END IF
- C
- RETURN
- C
- C End of CTRMM .
- C
- END
|