ctrsm.f 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421
  1. *DECK CTRSM
  2. SUBROUTINE CTRSM (SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA,
  3. $ B, LDB)
  4. C***BEGIN PROLOGUE CTRSM
  5. C***PURPOSE Solve a complex triangular system of equations with
  6. C multiple right-hand sides.
  7. C***LIBRARY SLATEC (BLAS)
  8. C***CATEGORY D1B6
  9. C***TYPE COMPLEX (STRSM-S, DTRSM-D, CTRSM-C)
  10. C***KEYWORDS LEVEL 3 BLAS, LINEAR ALGEBRA
  11. C***AUTHOR Dongarra, J., (ANL)
  12. C Duff, I., (AERE)
  13. C Du Croz, J., (NAG)
  14. C Hammarling, S. (NAG)
  15. C***DESCRIPTION
  16. C
  17. C CTRSM solves one of the matrix equations
  18. C
  19. C op( A )*X = alpha*B, or X*op( A ) = alpha*B,
  20. C
  21. C where alpha is a scalar, X and B are m by n matrices, A is a unit, or
  22. C non-unit, upper or lower triangular matrix and op( A ) is one of
  23. C
  24. C op( A ) = A or op( A ) = A' or op( A ) = conjg( A' ).
  25. C
  26. C The matrix X is overwritten on B.
  27. C
  28. C Parameters
  29. C ==========
  30. C
  31. C SIDE - CHARACTER*1.
  32. C On entry, SIDE specifies whether op( A ) appears on the left
  33. C or right of X as follows:
  34. C
  35. C SIDE = 'L' or 'l' op( A )*X = alpha*B.
  36. C
  37. C SIDE = 'R' or 'r' X*op( A ) = alpha*B.
  38. C
  39. C Unchanged on exit.
  40. C
  41. C UPLO - CHARACTER*1.
  42. C On entry, UPLO specifies whether the matrix A is an upper or
  43. C lower triangular matrix as follows:
  44. C
  45. C UPLO = 'U' or 'u' A is an upper triangular matrix.
  46. C
  47. C UPLO = 'L' or 'l' A is a lower triangular matrix.
  48. C
  49. C Unchanged on exit.
  50. C
  51. C TRANSA - CHARACTER*1.
  52. C On entry, TRANSA specifies the form of op( A ) to be used in
  53. C the matrix multiplication as follows:
  54. C
  55. C TRANSA = 'N' or 'n' op( A ) = A.
  56. C
  57. C TRANSA = 'T' or 't' op( A ) = A'.
  58. C
  59. C TRANSA = 'C' or 'c' op( A ) = conjg( A' ).
  60. C
  61. C Unchanged on exit.
  62. C
  63. C DIAG - CHARACTER*1.
  64. C On entry, DIAG specifies whether or not A is unit triangular
  65. C as follows:
  66. C
  67. C DIAG = 'U' or 'u' A is assumed to be unit triangular.
  68. C
  69. C DIAG = 'N' or 'n' A is not assumed to be unit
  70. C triangular.
  71. C
  72. C Unchanged on exit.
  73. C
  74. C M - INTEGER.
  75. C On entry, M specifies the number of rows of B. M must be at
  76. C least zero.
  77. C Unchanged on exit.
  78. C
  79. C N - INTEGER.
  80. C On entry, N specifies the number of columns of B. N must be
  81. C at least zero.
  82. C Unchanged on exit.
  83. C
  84. C ALPHA - COMPLEX .
  85. C On entry, ALPHA specifies the scalar alpha. When alpha is
  86. C zero then A is not referenced and B need not be set before
  87. C entry.
  88. C Unchanged on exit.
  89. C
  90. C A - COMPLEX array of DIMENSION ( LDA, k ), where k is m
  91. C when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'.
  92. C Before entry with UPLO = 'U' or 'u', the leading k by k
  93. C upper triangular part of the array A must contain the upper
  94. C triangular matrix and the strictly lower triangular part of
  95. C A is not referenced.
  96. C Before entry with UPLO = 'L' or 'l', the leading k by k
  97. C lower triangular part of the array A must contain the lower
  98. C triangular matrix and the strictly upper triangular part of
  99. C A is not referenced.
  100. C Note that when DIAG = 'U' or 'u', the diagonal elements of
  101. C A are not referenced either, but are assumed to be unity.
  102. C Unchanged on exit.
  103. C
  104. C LDA - INTEGER.
  105. C On entry, LDA specifies the first dimension of A as declared
  106. C in the calling (sub) program. When SIDE = 'L' or 'l' then
  107. C LDA must be at least max( 1, m ), when SIDE = 'R' or 'r'
  108. C then LDA must be at least max( 1, n ).
  109. C Unchanged on exit.
  110. C
  111. C B - COMPLEX array of DIMENSION ( LDB, n ).
  112. C Before entry, the leading m by n part of the array B must
  113. C contain the right-hand side matrix B, and on exit is
  114. C overwritten by the solution matrix X.
  115. C
  116. C LDB - INTEGER.
  117. C On entry, LDB specifies the first dimension of B as declared
  118. C in the calling (sub) program. LDB must be at least
  119. C max( 1, m ).
  120. C Unchanged on exit.
  121. C
  122. C***REFERENCES Dongarra, J., Du Croz, J., Duff, I., and Hammarling, S.
  123. C A set of level 3 basic linear algebra subprograms.
  124. C ACM TOMS, Vol. 16, No. 1, pp. 1-17, March 1990.
  125. C***ROUTINES CALLED LSAME, XERBLA
  126. C***REVISION HISTORY (YYMMDD)
  127. C 890208 DATE WRITTEN
  128. C 910605 Modified to meet SLATEC prologue standards. Only comment
  129. C lines were modified. (BKS)
  130. C***END PROLOGUE CTRSM
  131. C .. Scalar Arguments ..
  132. CHARACTER*1 SIDE, UPLO, TRANSA, DIAG
  133. INTEGER M, N, LDA, LDB
  134. COMPLEX ALPHA
  135. C .. Array Arguments ..
  136. COMPLEX A( LDA, * ), B( LDB, * )
  137. C .. External Functions ..
  138. LOGICAL LSAME
  139. EXTERNAL LSAME
  140. C .. External Subroutines ..
  141. EXTERNAL XERBLA
  142. C .. Intrinsic Functions ..
  143. INTRINSIC CONJG, MAX
  144. C .. Local Scalars ..
  145. LOGICAL LSIDE, NOCONJ, NOUNIT, UPPER
  146. INTEGER I, INFO, J, K, NROWA
  147. COMPLEX TEMP
  148. C .. Parameters ..
  149. COMPLEX ONE
  150. PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
  151. COMPLEX ZERO
  152. PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
  153. C***FIRST EXECUTABLE STATEMENT CTRSM
  154. C
  155. C Test the input parameters.
  156. C
  157. LSIDE = LSAME( SIDE , 'L' )
  158. IF( LSIDE )THEN
  159. NROWA = M
  160. ELSE
  161. NROWA = N
  162. END IF
  163. NOCONJ = LSAME( TRANSA, 'T' )
  164. NOUNIT = LSAME( DIAG , 'N' )
  165. UPPER = LSAME( UPLO , 'U' )
  166. C
  167. INFO = 0
  168. IF( ( .NOT.LSIDE ).AND.
  169. $ ( .NOT.LSAME( SIDE , 'R' ) ) )THEN
  170. INFO = 1
  171. ELSE IF( ( .NOT.UPPER ).AND.
  172. $ ( .NOT.LSAME( UPLO , 'L' ) ) )THEN
  173. INFO = 2
  174. ELSE IF( ( .NOT.LSAME( TRANSA, 'N' ) ).AND.
  175. $ ( .NOT.LSAME( TRANSA, 'T' ) ).AND.
  176. $ ( .NOT.LSAME( TRANSA, 'C' ) ) )THEN
  177. INFO = 3
  178. ELSE IF( ( .NOT.LSAME( DIAG , 'U' ) ).AND.
  179. $ ( .NOT.LSAME( DIAG , 'N' ) ) )THEN
  180. INFO = 4
  181. ELSE IF( M .LT.0 )THEN
  182. INFO = 5
  183. ELSE IF( N .LT.0 )THEN
  184. INFO = 6
  185. ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
  186. INFO = 9
  187. ELSE IF( LDB.LT.MAX( 1, M ) )THEN
  188. INFO = 11
  189. END IF
  190. IF( INFO.NE.0 )THEN
  191. CALL XERBLA( 'CTRSM ', INFO )
  192. RETURN
  193. END IF
  194. C
  195. C Quick return if possible.
  196. C
  197. IF( N.EQ.0 )
  198. $ RETURN
  199. C
  200. C And when alpha.eq.zero.
  201. C
  202. IF( ALPHA.EQ.ZERO )THEN
  203. DO 20, J = 1, N
  204. DO 10, I = 1, M
  205. B( I, J ) = ZERO
  206. 10 CONTINUE
  207. 20 CONTINUE
  208. RETURN
  209. END IF
  210. C
  211. C Start the operations.
  212. C
  213. IF( LSIDE )THEN
  214. IF( LSAME( TRANSA, 'N' ) )THEN
  215. C
  216. C Form B := alpha*inv( A )*B.
  217. C
  218. IF( UPPER )THEN
  219. DO 60, J = 1, N
  220. IF( ALPHA.NE.ONE )THEN
  221. DO 30, I = 1, M
  222. B( I, J ) = ALPHA*B( I, J )
  223. 30 CONTINUE
  224. END IF
  225. DO 50, K = M, 1, -1
  226. IF( B( K, J ).NE.ZERO )THEN
  227. IF( NOUNIT )
  228. $ B( K, J ) = B( K, J )/A( K, K )
  229. DO 40, I = 1, K - 1
  230. B( I, J ) = B( I, J ) - B( K, J )*A( I, K )
  231. 40 CONTINUE
  232. END IF
  233. 50 CONTINUE
  234. 60 CONTINUE
  235. ELSE
  236. DO 100, J = 1, N
  237. IF( ALPHA.NE.ONE )THEN
  238. DO 70, I = 1, M
  239. B( I, J ) = ALPHA*B( I, J )
  240. 70 CONTINUE
  241. END IF
  242. DO 90 K = 1, M
  243. IF( B( K, J ).NE.ZERO )THEN
  244. IF( NOUNIT )
  245. $ B( K, J ) = B( K, J )/A( K, K )
  246. DO 80, I = K + 1, M
  247. B( I, J ) = B( I, J ) - B( K, J )*A( I, K )
  248. 80 CONTINUE
  249. END IF
  250. 90 CONTINUE
  251. 100 CONTINUE
  252. END IF
  253. ELSE
  254. C
  255. C Form B := alpha*inv( A' )*B
  256. C or B := alpha*inv( conjg( A' ) )*B.
  257. C
  258. IF( UPPER )THEN
  259. DO 140, J = 1, N
  260. DO 130, I = 1, M
  261. TEMP = ALPHA*B( I, J )
  262. IF( NOCONJ )THEN
  263. DO 110, K = 1, I - 1
  264. TEMP = TEMP - A( K, I )*B( K, J )
  265. 110 CONTINUE
  266. IF( NOUNIT )
  267. $ TEMP = TEMP/A( I, I )
  268. ELSE
  269. DO 120, K = 1, I - 1
  270. TEMP = TEMP - CONJG( A( K, I ) )*B( K, J )
  271. 120 CONTINUE
  272. IF( NOUNIT )
  273. $ TEMP = TEMP/CONJG( A( I, I ) )
  274. END IF
  275. B( I, J ) = TEMP
  276. 130 CONTINUE
  277. 140 CONTINUE
  278. ELSE
  279. DO 180, J = 1, N
  280. DO 170, I = M, 1, -1
  281. TEMP = ALPHA*B( I, J )
  282. IF( NOCONJ )THEN
  283. DO 150, K = I + 1, M
  284. TEMP = TEMP - A( K, I )*B( K, J )
  285. 150 CONTINUE
  286. IF( NOUNIT )
  287. $ TEMP = TEMP/A( I, I )
  288. ELSE
  289. DO 160, K = I + 1, M
  290. TEMP = TEMP - CONJG( A( K, I ) )*B( K, J )
  291. 160 CONTINUE
  292. IF( NOUNIT )
  293. $ TEMP = TEMP/CONJG( A( I, I ) )
  294. END IF
  295. B( I, J ) = TEMP
  296. 170 CONTINUE
  297. 180 CONTINUE
  298. END IF
  299. END IF
  300. ELSE
  301. IF( LSAME( TRANSA, 'N' ) )THEN
  302. C
  303. C Form B := alpha*B*inv( A ).
  304. C
  305. IF( UPPER )THEN
  306. DO 230, J = 1, N
  307. IF( ALPHA.NE.ONE )THEN
  308. DO 190, I = 1, M
  309. B( I, J ) = ALPHA*B( I, J )
  310. 190 CONTINUE
  311. END IF
  312. DO 210, K = 1, J - 1
  313. IF( A( K, J ).NE.ZERO )THEN
  314. DO 200, I = 1, M
  315. B( I, J ) = B( I, J ) - A( K, J )*B( I, K )
  316. 200 CONTINUE
  317. END IF
  318. 210 CONTINUE
  319. IF( NOUNIT )THEN
  320. TEMP = ONE/A( J, J )
  321. DO 220, I = 1, M
  322. B( I, J ) = TEMP*B( I, J )
  323. 220 CONTINUE
  324. END IF
  325. 230 CONTINUE
  326. ELSE
  327. DO 280, J = N, 1, -1
  328. IF( ALPHA.NE.ONE )THEN
  329. DO 240, I = 1, M
  330. B( I, J ) = ALPHA*B( I, J )
  331. 240 CONTINUE
  332. END IF
  333. DO 260, K = J + 1, N
  334. IF( A( K, J ).NE.ZERO )THEN
  335. DO 250, I = 1, M
  336. B( I, J ) = B( I, J ) - A( K, J )*B( I, K )
  337. 250 CONTINUE
  338. END IF
  339. 260 CONTINUE
  340. IF( NOUNIT )THEN
  341. TEMP = ONE/A( J, J )
  342. DO 270, I = 1, M
  343. B( I, J ) = TEMP*B( I, J )
  344. 270 CONTINUE
  345. END IF
  346. 280 CONTINUE
  347. END IF
  348. ELSE
  349. C
  350. C Form B := alpha*B*inv( A' )
  351. C or B := alpha*B*inv( conjg( A' ) ).
  352. C
  353. IF( UPPER )THEN
  354. DO 330, K = N, 1, -1
  355. IF( NOUNIT )THEN
  356. IF( NOCONJ )THEN
  357. TEMP = ONE/A( K, K )
  358. ELSE
  359. TEMP = ONE/CONJG( A( K, K ) )
  360. END IF
  361. DO 290, I = 1, M
  362. B( I, K ) = TEMP*B( I, K )
  363. 290 CONTINUE
  364. END IF
  365. DO 310, J = 1, K - 1
  366. IF( A( J, K ).NE.ZERO )THEN
  367. IF( NOCONJ )THEN
  368. TEMP = A( J, K )
  369. ELSE
  370. TEMP = CONJG( A( J, K ) )
  371. END IF
  372. DO 300, I = 1, M
  373. B( I, J ) = B( I, J ) - TEMP*B( I, K )
  374. 300 CONTINUE
  375. END IF
  376. 310 CONTINUE
  377. IF( ALPHA.NE.ONE )THEN
  378. DO 320, I = 1, M
  379. B( I, K ) = ALPHA*B( I, K )
  380. 320 CONTINUE
  381. END IF
  382. 330 CONTINUE
  383. ELSE
  384. DO 380, K = 1, N
  385. IF( NOUNIT )THEN
  386. IF( NOCONJ )THEN
  387. TEMP = ONE/A( K, K )
  388. ELSE
  389. TEMP = ONE/CONJG( A( K, K ) )
  390. END IF
  391. DO 340, I = 1, M
  392. B( I, K ) = TEMP*B( I, K )
  393. 340 CONTINUE
  394. END IF
  395. DO 360, J = K + 1, N
  396. IF( A( J, K ).NE.ZERO )THEN
  397. IF( NOCONJ )THEN
  398. TEMP = A( J, K )
  399. ELSE
  400. TEMP = CONJG( A( J, K ) )
  401. END IF
  402. DO 350, I = 1, M
  403. B( I, J ) = B( I, J ) - TEMP*B( I, K )
  404. 350 CONTINUE
  405. END IF
  406. 360 CONTINUE
  407. IF( ALPHA.NE.ONE )THEN
  408. DO 370, I = 1, M
  409. B( I, K ) = ALPHA*B( I, K )
  410. 370 CONTINUE
  411. END IF
  412. 380 CONTINUE
  413. END IF
  414. END IF
  415. END IF
  416. C
  417. RETURN
  418. C
  419. C End of CTRSM .
  420. C
  421. END