daxpy.f 2.9 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192
  1. *DECK DAXPY
  2. SUBROUTINE DAXPY (N, DA, DX, INCX, DY, INCY)
  3. C***BEGIN PROLOGUE DAXPY
  4. C***PURPOSE Compute a constant times a vector plus a vector.
  5. C***LIBRARY SLATEC (BLAS)
  6. C***CATEGORY D1A7
  7. C***TYPE DOUBLE PRECISION (SAXPY-S, DAXPY-D, CAXPY-C)
  8. C***KEYWORDS BLAS, LINEAR ALGEBRA, TRIAD, VECTOR
  9. C***AUTHOR Lawson, C. L., (JPL)
  10. C Hanson, R. J., (SNLA)
  11. C Kincaid, D. R., (U. of Texas)
  12. C Krogh, F. T., (JPL)
  13. C***DESCRIPTION
  14. C
  15. C B L A S Subprogram
  16. C Description of Parameters
  17. C
  18. C --Input--
  19. C N number of elements in input vector(s)
  20. C DA double precision scalar multiplier
  21. C DX double precision vector with N elements
  22. C INCX storage spacing between elements of DX
  23. C DY double precision vector with N elements
  24. C INCY storage spacing between elements of DY
  25. C
  26. C --Output--
  27. C DY double precision result (unchanged if N .LE. 0)
  28. C
  29. C Overwrite double precision DY with double precision DA*DX + DY.
  30. C For I = 0 to N-1, replace DY(LY+I*INCY) with DA*DX(LX+I*INCX) +
  31. C DY(LY+I*INCY),
  32. C where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is
  33. C defined in a similar way using INCY.
  34. C
  35. C***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
  36. C Krogh, Basic linear algebra subprograms for Fortran
  37. C usage, Algorithm No. 539, Transactions on Mathematical
  38. C Software 5, 3 (September 1979), pp. 308-323.
  39. C***ROUTINES CALLED (NONE)
  40. C***REVISION HISTORY (YYMMDD)
  41. C 791001 DATE WRITTEN
  42. C 890831 Modified array declarations. (WRB)
  43. C 890831 REVISION DATE from Version 3.2
  44. C 891214 Prologue converted to Version 4.0 format. (BAB)
  45. C 920310 Corrected definition of LX in DESCRIPTION. (WRB)
  46. C 920501 Reformatted the REFERENCES section. (WRB)
  47. C***END PROLOGUE DAXPY
  48. DOUBLE PRECISION DX(*), DY(*), DA
  49. C***FIRST EXECUTABLE STATEMENT DAXPY
  50. IF (N.LE.0 .OR. DA.EQ.0.0D0) RETURN
  51. IF (INCX .EQ. INCY) IF (INCX-1) 5,20,60
  52. C
  53. C Code for unequal or nonpositive increments.
  54. C
  55. 5 IX = 1
  56. IY = 1
  57. IF (INCX .LT. 0) IX = (-N+1)*INCX + 1
  58. IF (INCY .LT. 0) IY = (-N+1)*INCY + 1
  59. DO 10 I = 1,N
  60. DY(IY) = DY(IY) + DA*DX(IX)
  61. IX = IX + INCX
  62. IY = IY + INCY
  63. 10 CONTINUE
  64. RETURN
  65. C
  66. C Code for both increments equal to 1.
  67. C
  68. C Clean-up loop so remaining vector length is a multiple of 4.
  69. C
  70. 20 M = MOD(N,4)
  71. IF (M .EQ. 0) GO TO 40
  72. DO 30 I = 1,M
  73. DY(I) = DY(I) + DA*DX(I)
  74. 30 CONTINUE
  75. IF (N .LT. 4) RETURN
  76. 40 MP1 = M + 1
  77. DO 50 I = MP1,N,4
  78. DY(I) = DY(I) + DA*DX(I)
  79. DY(I+1) = DY(I+1) + DA*DX(I+1)
  80. DY(I+2) = DY(I+2) + DA*DX(I+2)
  81. DY(I+3) = DY(I+3) + DA*DX(I+3)
  82. 50 CONTINUE
  83. RETURN
  84. C
  85. C Code for equal, positive, non-unit increments.
  86. C
  87. 60 NS = N*INCX
  88. DO 70 I = 1,NS,INCX
  89. DY(I) = DA*DX(I) + DY(I)
  90. 70 CONTINUE
  91. RETURN
  92. END