123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120 |
- *DECK DBETAI
- DOUBLE PRECISION FUNCTION DBETAI (X, PIN, QIN)
- C***BEGIN PROLOGUE DBETAI
- C***PURPOSE Calculate the incomplete Beta function.
- C***LIBRARY SLATEC (FNLIB)
- C***CATEGORY C7F
- C***TYPE DOUBLE PRECISION (BETAI-S, DBETAI-D)
- C***KEYWORDS FNLIB, INCOMPLETE BETA FUNCTION, SPECIAL FUNCTIONS
- C***AUTHOR Fullerton, W., (LANL)
- C***DESCRIPTION
- C
- C DBETAI calculates the DOUBLE PRECISION incomplete beta function.
- C
- C The incomplete beta function ratio is the probability that a
- C random variable from a beta distribution having parameters PIN and
- C QIN will be less than or equal to X.
- C
- C -- Input Arguments -- All arguments are DOUBLE PRECISION.
- C X upper limit of integration. X must be in (0,1) inclusive.
- C PIN first beta distribution parameter. PIN must be .GT. 0.0.
- C QIN second beta distribution parameter. QIN must be .GT. 0.0.
- C
- C***REFERENCES Nancy E. Bosten and E. L. Battiste, Remark on Algorithm
- C 179, Communications of the ACM 17, 3 (March 1974),
- C pp. 156.
- C***ROUTINES CALLED D1MACH, DLBETA, XERMSG
- C***REVISION HISTORY (YYMMDD)
- C 770701 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890911 Removed unnecessary intrinsics. (WRB)
- C 890911 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
- C 920528 DESCRIPTION and REFERENCES sections revised. (WRB)
- C***END PROLOGUE DBETAI
- DOUBLE PRECISION X, PIN, QIN, ALNEPS, ALNSML, C, EPS, FINSUM, P,
- 1 PS, Q, SML, TERM, XB, XI, Y, D1MACH, DLBETA, P1
- LOGICAL FIRST
- SAVE EPS, ALNEPS, SML, ALNSML, FIRST
- DATA FIRST /.TRUE./
- C***FIRST EXECUTABLE STATEMENT DBETAI
- IF (FIRST) THEN
- EPS = D1MACH(3)
- ALNEPS = LOG (EPS)
- SML = D1MACH(1)
- ALNSML = LOG (SML)
- ENDIF
- FIRST = .FALSE.
- C
- IF (X .LT. 0.D0 .OR. X .GT. 1.D0) CALL XERMSG ('SLATEC', 'DBETAI',
- + 'X IS NOT IN THE RANGE (0,1)', 1, 2)
- IF (PIN .LE. 0.D0 .OR. QIN .LE. 0.D0) CALL XERMSG ('SLATEC',
- + 'DBETAI', 'P AND/OR Q IS LE ZERO', 2, 2)
- C
- Y = X
- P = PIN
- Q = QIN
- IF (Q.LE.P .AND. X.LT.0.8D0) GO TO 20
- IF (X.LT.0.2D0) GO TO 20
- Y = 1.0D0 - Y
- P = QIN
- Q = PIN
- C
- 20 IF ((P+Q)*Y/(P+1.D0).LT.EPS) GO TO 80
- C
- C EVALUATE THE INFINITE SUM FIRST. TERM WILL EQUAL
- C Y**P/BETA(PS,P) * (1.-PS)-SUB-I * Y**I / FAC(I) .
- C
- PS = Q - AINT(Q)
- IF (PS.EQ.0.D0) PS = 1.0D0
- XB = P*LOG(Y) - DLBETA(PS,P) - LOG(P)
- DBETAI = 0.0D0
- IF (XB.LT.ALNSML) GO TO 40
- C
- DBETAI = EXP (XB)
- TERM = DBETAI*P
- IF (PS.EQ.1.0D0) GO TO 40
- N = MAX (ALNEPS/LOG(Y), 4.0D0)
- DO 30 I=1,N
- XI = I
- TERM = TERM * (XI-PS)*Y/XI
- DBETAI = DBETAI + TERM/(P+XI)
- 30 CONTINUE
- C
- C NOW EVALUATE THE FINITE SUM, MAYBE.
- C
- 40 IF (Q.LE.1.0D0) GO TO 70
- C
- XB = P*LOG(Y) + Q*LOG(1.0D0-Y) - DLBETA(P,Q) - LOG(Q)
- IB = MAX (XB/ALNSML, 0.0D0)
- TERM = EXP(XB - IB*ALNSML)
- C = 1.0D0/(1.D0-Y)
- P1 = Q*C/(P+Q-1.D0)
- C
- FINSUM = 0.0D0
- N = Q
- IF (Q.EQ.DBLE(N)) N = N - 1
- DO 50 I=1,N
- IF (P1.LE.1.0D0 .AND. TERM/EPS.LE.FINSUM) GO TO 60
- XI = I
- TERM = (Q-XI+1.0D0)*C*TERM/(P+Q-XI)
- C
- IF (TERM.GT.1.0D0) IB = IB - 1
- IF (TERM.GT.1.0D0) TERM = TERM*SML
- C
- IF (IB.EQ.0) FINSUM = FINSUM + TERM
- 50 CONTINUE
- C
- 60 DBETAI = DBETAI + FINSUM
- 70 IF (Y.NE.X .OR. P.NE.PIN) DBETAI = 1.0D0 - DBETAI
- DBETAI = MAX (MIN (DBETAI, 1.0D0), 0.0D0)
- RETURN
- C
- 80 DBETAI = 0.0D0
- XB = P*LOG(MAX(Y,SML)) - LOG(P) - DLBETA(P,Q)
- IF (XB.GT.ALNSML .AND. Y.NE.0.0D0) DBETAI = EXP(XB)
- IF (Y.NE.X .OR. P.NE.PIN) DBETAI = 1.0D0 - DBETAI
- C
- RETURN
- END
|