123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188 |
- *DECK DBOLSM
- SUBROUTINE DBOLSM (W, MDW, MINPUT, NCOLS, BL, BU, IND, IOPT, X,
- + RNORM, MODE, RW, WW, SCL, IBASIS, IBB)
- C***BEGIN PROLOGUE DBOLSM
- C***SUBSIDIARY
- C***PURPOSE Subsidiary to DBOCLS and DBOLS
- C***LIBRARY SLATEC
- C***TYPE DOUBLE PRECISION (SBOLSM-S, DBOLSM-D)
- C***AUTHOR (UNKNOWN)
- C***DESCRIPTION
- C
- C **** Double Precision Version of SBOLSM ****
- C **** All INPUT and OUTPUT real variables are DOUBLE PRECISION ****
- C
- C Solve E*X = F (least squares sense) with bounds on
- C selected X values.
- C The user must have DIMENSION statements of the form:
- C
- C DIMENSION W(MDW,NCOLS+1), BL(NCOLS), BU(NCOLS),
- C * X(NCOLS+NX), RW(NCOLS), WW(NCOLS), SCL(NCOLS)
- C INTEGER IND(NCOLS), IOPT(1+NI), IBASIS(NCOLS), IBB(NCOLS)
- C
- C (Here NX=number of extra locations required for options 1,...,7;
- C NX=0 for no options; here NI=number of extra locations possibly
- C required for options 1-7; NI=0 for no options; NI=14 if all the
- C options are simultaneously in use.)
- C
- C INPUT
- C -----
- C
- C --------------------
- C W(MDW,*),MINPUT,NCOLS
- C --------------------
- C The array W(*,*) contains the matrix [E:F] on entry. The matrix
- C [E:F] has MINPUT rows and NCOLS+1 columns. This data is placed in
- C the array W(*,*) with E occupying the first NCOLS columns and the
- C right side vector F in column NCOLS+1. The row dimension, MDW, of
- C the array W(*,*) must satisfy the inequality MDW .ge. MINPUT.
- C Other values of MDW are errors. The values of MINPUT and NCOLS
- C must be positive. Other values are errors.
- C
- C ------------------
- C BL(*),BU(*),IND(*)
- C ------------------
- C These arrays contain the information about the bounds that the
- C solution values are to satisfy. The value of IND(J) tells the
- C type of bound and BL(J) and BU(J) give the explicit values for
- C the respective upper and lower bounds.
- C
- C 1. For IND(J)=1, require X(J) .ge. BL(J).
- C 2. For IND(J)=2, require X(J) .le. BU(J).
- C 3. For IND(J)=3, require X(J) .ge. BL(J) and
- C X(J) .le. BU(J).
- C 4. For IND(J)=4, no bounds on X(J) are required.
- C The values of BL(*),BL(*) are modified by the subprogram. Values
- C other than 1,2,3 or 4 for IND(J) are errors. In the case IND(J)=3
- C (upper and lower bounds) the condition BL(J) .gt. BU(J) is an
- C error.
- C
- C -------
- C IOPT(*)
- C -------
- C This is the array where the user can specify nonstandard options
- C for DBOLSM. Most of the time this feature can be ignored by
- C setting the input value IOPT(1)=99. Occasionally users may have
- C needs that require use of the following subprogram options. For
- C details about how to use the options see below: IOPT(*) CONTENTS.
- C
- C Option Number Brief Statement of Purpose
- C ----- ------ ----- --------- -- -------
- C 1 Move the IOPT(*) processing pointer.
- C 2 Change rank determination tolerance.
- C 3 Change blow-up factor that determines the
- C size of variables being dropped from active
- C status.
- C 4 Reset the maximum number of iterations to use
- C in solving the problem.
- C 5 The data matrix is triangularized before the
- C problem is solved whenever (NCOLS/MINPUT) .lt.
- C FAC. Change the value of FAC.
- C 6 Redefine the weighting matrix used for
- C linear independence checking.
- C 7 Debug output is desired.
- C 99 No more options to change.
- C
- C ----
- C X(*)
- C ----
- C This array is used to pass data associated with options 1,2,3 and
- C 5. Ignore this input parameter if none of these options are used.
- C Otherwise see below: IOPT(*) CONTENTS.
- C
- C ----------------
- C IBASIS(*),IBB(*)
- C ----------------
- C These arrays must be initialized by the user. The values
- C IBASIS(J)=J, J=1,...,NCOLS
- C IBB(J) =1, J=1,...,NCOLS
- C are appropriate except when using nonstandard features.
- C
- C ------
- C SCL(*)
- C ------
- C This is the array of scaling factors to use on the columns of the
- C matrix E. These values must be defined by the user. To suppress
- C any column scaling set SCL(J)=1.0, J=1,...,NCOLS.
- C
- C OUTPUT
- C ------
- C
- C ----------
- C X(*),RNORM
- C ----------
- C The array X(*) contains a solution (if MODE .ge. 0 or .eq. -22)
- C for the constrained least squares problem. The value RNORM is the
- C minimum residual vector length.
- C
- C ----
- C MODE
- C ----
- C The sign of mode determines whether the subprogram has completed
- C normally, or encountered an error condition or abnormal status.
- C A value of MODE .ge. 0 signifies that the subprogram has completed
- C normally. The value of MODE (.ge. 0) is the number of variables
- C in an active status: not at a bound nor at the value ZERO, for
- C the case of free variables. A negative value of MODE will be one
- C of the 18 cases -38,-37,...,-22, or -1. Values .lt. -1 correspond
- C to an abnormal completion of the subprogram. To understand the
- C abnormal completion codes see below: ERROR MESSAGES for DBOLSM
- C An approximate solution will be returned to the user only when
- C maximum iterations is reached, MODE=-22.
- C
- C -----------
- C RW(*),WW(*)
- C -----------
- C These are working arrays each with NCOLS entries. The array RW(*)
- C contains the working (scaled, nonactive) solution values. The
- C array WW(*) contains the working (scaled, active) gradient vector
- C values.
- C
- C ----------------
- C IBASIS(*),IBB(*)
- C ----------------
- C These arrays contain information about the status of the solution
- C when MODE .ge. 0. The indices IBASIS(K), K=1,...,MODE, show the
- C nonactive variables; indices IBASIS(K), K=MODE+1,..., NCOLS are
- C the active variables. The value (IBB(J)-1) is the number of times
- C variable J was reflected from its upper bound. (Normally the user
- C can ignore these parameters.)
- C
- C IOPT(*) CONTENTS
- C ------- --------
- C The option array allows a user to modify internal variables in
- C the subprogram without recompiling the source code. A central
- C goal of the initial software design was to do a good job for most
- C people. Thus the use of options will be restricted to a select
- C group of users. The processing of the option array proceeds as
- C follows: a pointer, here called LP, is initially set to the value
- C 1. The value is updated as the options are processed. At the
- C pointer position the option number is extracted and used for
- C locating other information that allows for options to be changed.
- C The portion of the array IOPT(*) that is used for each option is
- C fixed; the user and the subprogram both know how many locations
- C are needed for each option. A great deal of error checking is
- C done by the subprogram on the contents of the option array.
- C Nevertheless it is still possible to give the subprogram optional
- C input that is meaningless. For example, some of the options use
- C the location X(NCOLS+IOFF) for passing data. The user must manage
- C the allocation of these locations when more than one piece of
- C option data is being passed to the subprogram.
- C
- C 1
- C -
- C Move the processing pointer (either forward or backward) to the
- C location IOPT(LP+1). The processing pointer is moved to location
- C LP+2 of IOPT(*) in case IOPT(LP)=-1. For example to skip over
- C locations 3,...,NCOLS+2 of IOPT(*),
- C
- C IOPT(1)=1
- C IOPT(2)=NCOLS+3
- C (IOPT(I), I=3,...,NCOLS+2 are not defined here.)
- C IOPT(NCOLS+3)=99
- C CALL DBOLSM
- C
- C CAUTION: Misuse of this option can yield some very hard-to-find
- C bugs. Use it with care.
- C
- C 2
- C -
- C The algorithm that solves the bounded least squares problem
- C iteratively drops columns from the active set. This has the
- C effect of joining a new column vector to the QR factorization of
- C the rectangular matrix consisting of the partially triangularized
- C nonactive columns. After triangularizing this matrix a test is
- C made on the size of the pivot element. The column vector is
- C rejected as dependent if the magnitude of the pivot element is
- C .le. TOL* magnitude of the column in components strictly above
- C the pivot element. Nominally the value of this (rank) tolerance
- C is TOL = SQRT(R1MACH(4)). To change only the value of TOL, for
- C example,
- C
- C X(NCOLS+1)=TOL
- C IOPT(1)=2
- C IOPT(2)=1
- C IOPT(3)=99
- C CALL DBOLSM
- C
- C Generally, if LP is the processing pointer for IOPT(*),
- C
- C X(NCOLS+IOFF)=TOL
- C IOPT(LP)=2
- C IOPT(LP+1)=IOFF
- C .
- C CALL DBOLSM
- C
- C The required length of IOPT(*) is increased by 2 if option 2 is
- C used; The required length of X(*) is increased by 1. A value of
- C IOFF .le. 0 is an error. A value of TOL .le. R1MACH(4) gives a
- C warning message; it is not considered an error.
- C
- C 3
- C -
- C A solution component is left active (not used) if, roughly
- C speaking, it seems too large. Mathematically the new component is
- C left active if the magnitude is .ge.((vector norm of F)/(matrix
- C norm of E))/BLOWUP. Nominally the factor BLOWUP = SQRT(R1MACH(4)).
- C To change only the value of BLOWUP, for example,
- C
- C X(NCOLS+2)=BLOWUP
- C IOPT(1)=3
- C IOPT(2)=2
- C IOPT(3)=99
- C CALL DBOLSM
- C
- C Generally, if LP is the processing pointer for IOPT(*),
- C
- C X(NCOLS+IOFF)=BLOWUP
- C IOPT(LP)=3
- C IOPT(LP+1)=IOFF
- C .
- C CALL DBOLSM
- C
- C The required length of IOPT(*) is increased by 2 if option 3 is
- C used; the required length of X(*) is increased by 1. A value of
- C IOFF .le. 0 is an error. A value of BLOWUP .le. 0.0 is an error.
- C
- C 4
- C -
- C Normally the algorithm for solving the bounded least squares
- C problem requires between NCOLS/3 and NCOLS drop-add steps to
- C converge. (this remark is based on examining a small number of
- C test cases.) The amount of arithmetic for such problems is
- C typically about twice that required for linear least squares if
- C there are no bounds and if plane rotations are used in the
- C solution method. Convergence of the algorithm, while
- C mathematically certain, can be much slower than indicated. To
- C avoid this potential but unlikely event ITMAX drop-add steps are
- C permitted. Nominally ITMAX=5*(MAX(MINPUT,NCOLS)). To change the
- C value of ITMAX, for example,
- C
- C IOPT(1)=4
- C IOPT(2)=ITMAX
- C IOPT(3)=99
- C CALL DBOLSM
- C
- C Generally, if LP is the processing pointer for IOPT(*),
- C
- C IOPT(LP)=4
- C IOPT(LP+1)=ITMAX
- C .
- C CALL DBOLSM
- C
- C The value of ITMAX must be .gt. 0. Other values are errors. Use
- C of this option increases the required length of IOPT(*) by 2.
- C
- C 5
- C -
- C For purposes of increased efficiency the MINPUT by NCOLS+1 data
- C matrix [E:F] is triangularized as a first step whenever MINPUT
- C satisfies FAC*MINPUT .gt. NCOLS. Nominally FAC=0.75. To change the
- C value of FAC,
- C
- C X(NCOLS+3)=FAC
- C IOPT(1)=5
- C IOPT(2)=3
- C IOPT(3)=99
- C CALL DBOLSM
- C
- C Generally, if LP is the processing pointer for IOPT(*),
- C
- C X(NCOLS+IOFF)=FAC
- C IOPT(LP)=5
- C IOPT(LP+1)=IOFF
- C .
- C CALL DBOLSM
- C
- C The value of FAC must be nonnegative. Other values are errors.
- C Resetting FAC=0.0 suppresses the initial triangularization step.
- C Use of this option increases the required length of IOPT(*) by 2;
- C The required length of of X(*) is increased by 1.
- C
- C 6
- C -
- C The norm used in testing the magnitudes of the pivot element
- C compared to the mass of the column above the pivot line can be
- C changed. The type of change that this option allows is to weight
- C the components with an index larger than MVAL by the parameter
- C WT. Normally MVAL=0 and WT=1. To change both the values MVAL and
- C WT, where LP is the processing pointer for IOPT(*),
- C
- C X(NCOLS+IOFF)=WT
- C IOPT(LP)=6
- C IOPT(LP+1)=IOFF
- C IOPT(LP+2)=MVAL
- C
- C Use of this option increases the required length of IOPT(*) by 3.
- C The length of X(*) is increased by 1. Values of MVAL must be
- C nonnegative and not greater than MINPUT. Other values are errors.
- C The value of WT must be positive. Any other value is an error. If
- C either error condition is present a message will be printed.
- C
- C 7
- C -
- C Debug output, showing the detailed add-drop steps for the
- C constrained least squares problem, is desired. This option is
- C intended to be used to locate suspected bugs.
- C
- C 99
- C --
- C There are no more options to change.
- C
- C The values for options are 1,...,7,99, and are the only ones
- C permitted. Other values are errors. Options -99,-1,...,-7 mean
- C that the repective options 99,1,...,7 are left at their default
- C values. An example is the option to modify the (rank) tolerance:
- C
- C X(NCOLS+1)=TOL
- C IOPT(1)=-2
- C IOPT(2)=1
- C IOPT(3)=99
- C
- C Error Messages for DBOLSM
- C ----- -------- --- ---------
- C -22 MORE THAN ITMAX = ... ITERATIONS SOLVING BOUNDED LEAST
- C SQUARES PROBLEM.
- C
- C -23 THE OPTION NUMBER = ... IS NOT DEFINED.
- C
- C -24 THE OFFSET = ... BEYOND POSTION NCOLS = ... MUST BE POSITIVE
- C FOR OPTION NUMBER 2.
- C
- C -25 THE TOLERANCE FOR RANK DETERMINATION = ... IS LESS THAN
- C MACHINE PRECISION = ....
- C
- C -26 THE OFFSET = ... BEYOND POSITION NCOLS = ... MUST BE POSTIVE
- C FOR OPTION NUMBER 3.
- C
- C -27 THE RECIPROCAL OF THE BLOW-UP FACTOR FOR REJECTING VARIABLES
- C MUST BE POSITIVE. NOW = ....
- C
- C -28 THE MAXIMUM NUMBER OF ITERATIONS = ... MUST BE POSITIVE.
- C
- C -29 THE OFFSET = ... BEYOND POSITION NCOLS = ... MUST BE POSTIVE
- C FOR OPTION NUMBER 5.
- C
- C -30 THE FACTOR (NCOLS/MINPUT) WHERE PRETRIANGULARIZING IS
- C PERFORMED MUST BE NONNEGATIVE. NOW = ....
- C
- C -31 THE NUMBER OF ROWS = ... MUST BE POSITIVE.
- C
- C -32 THE NUMBER OF COLUMNS = ... MUST BE POSTIVE.
- C
- C -33 THE ROW DIMENSION OF W(,) = ... MUST BE .GE. THE NUMBER OF
- C ROWS = ....
- C
- C -34 FOR J = ... THE CONSTRAINT INDICATOR MUST BE 1-4.
- C
- C -35 FOR J = ... THE LOWER BOUND = ... IS .GT. THE UPPER BOUND =
- C ....
- C
- C -36 THE INPUT ORDER OF COLUMNS = ... IS NOT BETWEEN 1 AND NCOLS
- C = ....
- C
- C -37 THE BOUND POLARITY FLAG IN COMPONENT J = ... MUST BE
- C POSITIVE. NOW = ....
- C
- C -38 THE ROW SEPARATOR TO APPLY WEIGHTING (...) MUST LIE BETWEEN
- C 0 AND MINPUT = .... WEIGHT = ... MUST BE POSITIVE.
- C
- C***SEE ALSO DBOCLS, DBOLS
- C***ROUTINES CALLED D1MACH, DAXPY, DCOPY, DDOT, DMOUT, DNRM2, DROT,
- C DROTG, DSWAP, DVOUT, IVOUT, XERMSG
- C***REVISION HISTORY (YYMMDD)
- C 821220 DATE WRITTEN
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 900328 Added TYPE section. (WRB)
- C 900510 Convert XERRWV calls to XERMSG calls. (RWC)
- C 920422 Fixed usage of MINPUT. (WRB)
- C 901009 Editorial changes, code now reads from top to bottom. (RWC)
- C***END PROLOGUE DBOLSM
- C
- C PURPOSE
- C -------
- C THIS IS THE MAIN SUBPROGRAM THAT SOLVES THE BOUNDED
- C LEAST SQUARES PROBLEM. THE PROBLEM SOLVED HERE IS:
- C
- C SOLVE E*X = F (LEAST SQUARES SENSE)
- C WITH BOUNDS ON SELECTED X VALUES.
- C
- C TO CHANGE THIS SUBPROGRAM FROM SINGLE TO DOUBLE PRECISION BEGIN
- C EDITING AT THE CARD 'C++'.
- C CHANGE THE SUBPROGRAM NAME TO DBOLSM AND THE STRINGS
- C /SAXPY/ TO /DAXPY/, /SCOPY/ TO /DCOPY/,
- C /SDOT/ TO /DDOT/, /SNRM2/ TO /DNRM2/,
- C /SROT/ TO /DROT/, /SROTG/ TO /DROTG/, /R1MACH/ TO /D1MACH/,
- C /SVOUT/ TO /DVOUT/, /SMOUT/ TO /DMOUT/,
- C /SSWAP/ TO /DSWAP/, /E0/ TO /D0/,
- C /REAL / TO /DOUBLE PRECISION/.
- C++
- C
- DOUBLE PRECISION W(MDW,*),BL(*),BU(*)
- DOUBLE PRECISION X(*),RW(*),WW(*),SCL(*)
- DOUBLE PRECISION ALPHA,BETA,BOU,COLABV,COLBLO
- DOUBLE PRECISION CL1,CL2,CL3,ONE,BIG
- DOUBLE PRECISION FAC,RNORM,SC,SS,T,TOLIND,WT
- DOUBLE PRECISION TWO,T1,T2,WBIG,WLARGE,WMAG,XNEW
- DOUBLE PRECISION ZERO,DDOT,DNRM2
- DOUBLE PRECISION D1MACH,TOLSZE
- INTEGER IBASIS(*),IBB(*),IND(*),IOPT(*)
- LOGICAL FOUND,CONSTR
- CHARACTER*8 XERN1, XERN2
- CHARACTER*16 XERN3, XERN4
- C
- PARAMETER (ZERO=0.0D0, ONE=1.0D0, TWO=2.0D0)
- C
- INEXT(IDUM) = MIN(IDUM+1,MROWS)
- C***FIRST EXECUTABLE STATEMENT DBOLSM
- C
- C Verify that the problem dimensions are defined properly.
- C
- IF (MINPUT.LE.0) THEN
- WRITE (XERN1, '(I8)') MINPUT
- CALL XERMSG ('SLATEC', 'DBOLSM', 'THE NUMBER OF ROWS = ' //
- * XERN1 // ' MUST BE POSITIVE.', 31, 1)
- MODE = -31
- RETURN
- ENDIF
- C
- IF (NCOLS.LE.0) THEN
- WRITE (XERN1, '(I8)') NCOLS
- CALL XERMSG ('SLATEC', 'DBOLSM', 'THE NUMBER OF COLUMNS = ' //
- * XERN1 // ' MUST BE POSITIVE.', 32, 1)
- MODE = -32
- RETURN
- ENDIF
- C
- IF (MDW.LT.MINPUT) THEN
- WRITE (XERN1, '(I8)') MDW
- WRITE (XERN2, '(I8)') MINPUT
- CALL XERMSG ('SLATEC', 'DBOLSM',
- * 'THE ROW DIMENSION OF W(,) = ' // XERN1 //
- * ' MUST BE .GE. THE NUMBER OF ROWS = ' // XERN2, 33, 1)
- MODE = -33
- RETURN
- ENDIF
- C
- C Verify that bound information is correct.
- C
- DO 10 J = 1,NCOLS
- IF (IND(J).LT.1 .OR. IND(J).GT.4) THEN
- WRITE (XERN1, '(I8)') J
- WRITE (XERN2, '(I8)') IND(J)
- CALL XERMSG ('SLATEC', 'DBOLSM', 'FOR J = ' // XERN1 //
- * ' THE CONSTRAINT INDICATOR MUST BE 1-4', 34, 1)
- MODE = -34
- RETURN
- ENDIF
- 10 CONTINUE
- C
- DO 20 J = 1,NCOLS
- IF (IND(J).EQ.3) THEN
- IF (BU(J).LT.BL(J)) THEN
- WRITE (XERN1, '(I8)') J
- WRITE (XERN3, '(1PD15.6)') BL(J)
- WRITE (XERN4, '(1PD15.6)') BU(J)
- CALL XERMSG ('SLATEC', 'DBOLSM', 'FOR J = ' // XERN1
- * // ' THE LOWER BOUND = ' // XERN3 //
- * ' IS .GT. THE UPPER BOUND = ' // XERN4, 35, 1)
- MODE = -35
- RETURN
- ENDIF
- ENDIF
- 20 CONTINUE
- C
- C Check that permutation and polarity arrays have been set.
- C
- DO 30 J = 1,NCOLS
- IF (IBASIS(J).LT.1 .OR. IBASIS(J).GT.NCOLS) THEN
- WRITE (XERN1, '(I8)') IBASIS(J)
- WRITE (XERN2, '(I8)') NCOLS
- CALL XERMSG ('SLATEC', 'DBOLSM',
- * 'THE INPUT ORDER OF COLUMNS = ' // XERN1 //
- * ' IS NOT BETWEEN 1 AND NCOLS = ' // XERN2, 36, 1)
- MODE = -36
- RETURN
- ENDIF
- C
- IF (IBB(J).LE.0) THEN
- WRITE (XERN1, '(I8)') J
- WRITE (XERN2, '(I8)') IBB(J)
- CALL XERMSG ('SLATEC', 'DBOLSM',
- * 'THE BOUND POLARITY FLAG IN COMPONENT J = ' // XERN1 //
- * ' MUST BE POSITIVE.$$NOW = ' // XERN2, 37, 1)
- MODE = -37
- RETURN
- ENDIF
- 30 CONTINUE
- C
- C Process the option array.
- C
- FAC = 0.75D0
- TOLIND = SQRT(D1MACH(4))
- TOLSZE = SQRT(D1MACH(4))
- ITMAX = 5*MAX(MINPUT,NCOLS)
- WT = ONE
- MVAL = 0
- IPRINT = 0
- C
- C Changes to some parameters can occur through the option array,
- C IOPT(*). Process this array looking carefully for input data
- C errors.
- C
- LP = 0
- LDS = 0
- C
- C Test for no more options.
- C
- 590 LP = LP + LDS
- IP = IOPT(LP+1)
- JP = ABS(IP)
- IF (IP.EQ.99) THEN
- GO TO 470
- ELSE IF (JP.EQ.99) THEN
- LDS = 1
- ELSE IF (JP.EQ.1) THEN
- C
- C Move the IOPT(*) processing pointer.
- C
- IF (IP.GT.0) THEN
- LP = IOPT(LP+2) - 1
- LDS = 0
- ELSE
- LDS = 2
- ENDIF
- ELSE IF (JP.EQ.2) THEN
- C
- C Change tolerance for rank determination.
- C
- IF (IP.GT.0) THEN
- IOFF = IOPT(LP+2)
- IF (IOFF.LE.0) THEN
- WRITE (XERN1, '(I8)') IOFF
- WRITE (XERN2, '(I8)') NCOLS
- CALL XERMSG ('SLATEC', 'DBOLSM', 'THE OFFSET = ' //
- * XERN1 // ' BEYOND POSITION NCOLS = ' // XERN2 //
- * ' MUST BE POSITIVE FOR OPTION NUMBER 2.', 24, 1)
- MODE = -24
- RETURN
- ENDIF
- C
- TOLIND = X(NCOLS+IOFF)
- IF (TOLIND.LT.D1MACH(4)) THEN
- WRITE (XERN3, '(1PD15.6)') TOLIND
- WRITE (XERN4, '(1PD15.6)') D1MACH(4)
- CALL XERMSG ('SLATEC', 'DBOLSM',
- * 'THE TOLERANCE FOR RANK DETERMINATION = ' // XERN3
- * // ' IS LESS THAN MACHINE PRECISION = ' // XERN4,
- * 25, 0)
- MODE = -25
- ENDIF
- ENDIF
- LDS = 2
- ELSE IF (JP.EQ.3) THEN
- C
- C Change blowup factor for allowing variables to become
- C inactive.
- C
- IF (IP.GT.0) THEN
- IOFF = IOPT(LP+2)
- IF (IOFF.LE.0) THEN
- WRITE (XERN1, '(I8)') IOFF
- WRITE (XERN2, '(I8)') NCOLS
- CALL XERMSG ('SLATEC', 'DBOLSM', 'THE OFFSET = ' //
- * XERN1 // ' BEYOND POSITION NCOLS = ' // XERN2 //
- * ' MUST BE POSITIVE FOR OPTION NUMBER 3.', 26, 1)
- MODE = -26
- RETURN
- ENDIF
- C
- TOLSZE = X(NCOLS+IOFF)
- IF (TOLSZE.LE.ZERO) THEN
- WRITE (XERN3, '(1PD15.6)') TOLSZE
- CALL XERMSG ('SLATEC', 'DBOLSM', 'THE RECIPROCAL ' //
- * 'OF THE BLOW-UP FACTOR FOR REJECTING VARIABLES ' //
- * 'MUST BE POSITIVE.$$NOW = ' // XERN3, 27, 1)
- MODE = -27
- RETURN
- ENDIF
- ENDIF
- LDS = 2
- ELSE IF (JP.EQ.4) THEN
- C
- C Change the maximum number of iterations allowed.
- C
- IF (IP.GT.0) THEN
- ITMAX = IOPT(LP+2)
- IF (ITMAX.LE.0) THEN
- WRITE (XERN1, '(I8)') ITMAX
- CALL XERMSG ('SLATEC', 'DBOLSM',
- * 'THE MAXIMUM NUMBER OF ITERATIONS = ' // XERN1 //
- * ' MUST BE POSITIVE.', 28, 1)
- MODE = -28
- RETURN
- ENDIF
- ENDIF
- LDS = 2
- ELSE IF (JP.EQ.5) THEN
- C
- C Change the factor for pretriangularizing the data matrix.
- C
- IF (IP.GT.0) THEN
- IOFF = IOPT(LP+2)
- IF (IOFF.LE.0) THEN
- WRITE (XERN1, '(I8)') IOFF
- WRITE (XERN2, '(I8)') NCOLS
- CALL XERMSG ('SLATEC', 'DBOLSM', 'THE OFFSET = ' //
- * XERN1 // ' BEYOND POSITION NCOLS = ' // XERN2 //
- * ' MUST BE POSITIVE FOR OPTION NUMBER 5.', 29, 1)
- MODE = -29
- RETURN
- ENDIF
- C
- FAC = X(NCOLS+IOFF)
- IF (FAC.LT.ZERO) THEN
- WRITE (XERN3, '(1PD15.6)') FAC
- CALL XERMSG ('SLATEC', 'DBOLSM',
- * 'THE FACTOR (NCOLS/MINPUT) WHERE PRE-' //
- * 'TRIANGULARIZING IS PERFORMED MUST BE NON-' //
- * 'NEGATIVE.$$NOW = ' // XERN3, 30, 0)
- MODE = -30
- RETURN
- ENDIF
- ENDIF
- LDS = 2
- ELSE IF (JP.EQ.6) THEN
- C
- C Change the weighting factor (from 1.0) to apply to components
- C numbered .gt. MVAL (initially set to 1.) This trick is needed
- C for applications of this subprogram to the heavily weighted
- C least squares problem that come from equality constraints.
- C
- IF (IP.GT.0) THEN
- IOFF = IOPT(LP+2)
- MVAL = IOPT(LP+3)
- WT = X(NCOLS+IOFF)
- ENDIF
- C
- IF (MVAL.LT.0 .OR. MVAL.GT.MINPUT .OR. WT.LE.ZERO) THEN
- WRITE (XERN1, '(I8)') MVAL
- WRITE (XERN2, '(I8)') MINPUT
- WRITE (XERN3, '(1PD15.6)') WT
- CALL XERMSG ('SLATEC', 'DBOLSM',
- * 'THE ROW SEPARATOR TO APPLY WEIGHTING (' // XERN1 //
- * ') MUST LIE BETWEEN 0 AND MINPUT = ' // XERN2 //
- * '.$$WEIGHT = ' // XERN3 // ' MUST BE POSITIVE.', 38, 0)
- MODE = -38
- RETURN
- ENDIF
- LDS = 3
- ELSE IF (JP.EQ.7) THEN
- C
- C Turn on debug output.
- C
- IF (IP.GT.0) IPRINT = 1
- LDS = 2
- ELSE
- WRITE (XERN1, '(I8)') IP
- CALL XERMSG ('SLATEC', 'DBOLSM', 'THE OPTION NUMBER = ' //
- * XERN1 // ' IS NOT DEFINED.', 23, 1)
- MODE = -23
- RETURN
- ENDIF
- GO TO 590
- C
- C Pretriangularize rectangular arrays of certain sizes for
- C increased efficiency.
- C
- 470 IF (FAC*MINPUT.GT.NCOLS) THEN
- DO 490 J = 1,NCOLS+1
- DO 480 I = MINPUT,J+MVAL+1,-1
- CALL DROTG(W(I-1,J),W(I,J),SC,SS)
- W(I,J) = ZERO
- CALL DROT(NCOLS-J+1,W(I-1,J+1),MDW,W(I,J+1),MDW,SC,SS)
- 480 CONTINUE
- 490 CONTINUE
- MROWS = NCOLS + MVAL + 1
- ELSE
- MROWS = MINPUT
- ENDIF
- C
- C Set the X(*) array to zero so all components are defined.
- C
- CALL DCOPY(NCOLS,ZERO,0,X,1)
- C
- C The arrays IBASIS(*) and IBB(*) are initialized by the calling
- C program and the column scaling is defined in the calling program.
- C 'BIG' is plus infinity on this machine.
- C
- BIG = D1MACH(2)
- DO 550 J = 1,NCOLS
- IF (IND(J).EQ.1) THEN
- BU(J) = BIG
- ELSE IF (IND(J).EQ.2) THEN
- BL(J) = -BIG
- ELSE IF (IND(J).EQ.4) THEN
- BL(J) = -BIG
- BU(J) = BIG
- ENDIF
- 550 CONTINUE
- C
- DO 570 J = 1,NCOLS
- IF ((BL(J).LE.ZERO.AND.ZERO.LE.BU(J).AND.ABS(BU(J)).LT.
- * ABS(BL(J))) .OR. BU(J).LT.ZERO) THEN
- T = BU(J)
- BU(J) = -BL(J)
- BL(J) = -T
- SCL(J) = -SCL(J)
- DO 560 I = 1,MROWS
- W(I,J) = -W(I,J)
- 560 CONTINUE
- ENDIF
- C
- C Indices in set T(=TIGHT) are denoted by negative values
- C of IBASIS(*).
- C
- IF (BL(J).GE.ZERO) THEN
- IBASIS(J) = -IBASIS(J)
- T = -BL(J)
- BU(J) = BU(J) + T
- CALL DAXPY(MROWS,T,W(1,J),1,W(1,NCOLS+1),1)
- ENDIF
- 570 CONTINUE
- C
- NSETB = 0
- ITER = 0
- C
- IF (IPRINT.GT.0) THEN
- CALL DMOUT(MROWS,NCOLS+1,MDW,W,'('' PRETRI. INPUT MATRIX'')',
- * -4)
- CALL DVOUT(NCOLS,BL,'('' LOWER BOUNDS'')',-4)
- CALL DVOUT(NCOLS,BU,'('' UPPER BOUNDS'')',-4)
- ENDIF
- C
- 580 ITER = ITER + 1
- IF (ITER.GT.ITMAX) THEN
- WRITE (XERN1, '(I8)') ITMAX
- CALL XERMSG ('SLATEC', 'DBOLSM', 'MORE THAN ITMAX = ' // XERN1
- * // ' ITERATIONS SOLVING BOUNDED LEAST SQUARES PROBLEM.',
- * 22, 1)
- MODE = -22
- C
- C Rescale and translate variables.
- C
- IGOPR = 1
- GO TO 130
- ENDIF
- C
- C Find a variable to become non-active.
- C T
- C Compute (negative) of gradient vector, W = E *(F-E*X).
- C
- CALL DCOPY(NCOLS,ZERO,0,WW,1)
- DO 200 J = NSETB+1,NCOLS
- JCOL = ABS(IBASIS(J))
- WW(J) = DDOT(MROWS-NSETB,W(INEXT(NSETB),J),1,
- * W(INEXT(NSETB),NCOLS+1),1)*ABS(SCL(JCOL))
- 200 CONTINUE
- C
- IF (IPRINT.GT.0) THEN
- CALL DVOUT(NCOLS,WW,'('' GRADIENT VALUES'')',-4)
- CALL IVOUT(NCOLS,IBASIS,'('' INTERNAL VARIABLE ORDER'')',-4)
- CALL IVOUT(NCOLS,IBB,'('' BOUND POLARITY'')',-4)
- ENDIF
- C
- C If active set = number of total rows, quit.
- C
- 210 IF (NSETB.EQ.MROWS) THEN
- FOUND = .FALSE.
- GO TO 120
- ENDIF
- C
- C Choose an extremal component of gradient vector for a candidate
- C to become non-active.
- C
- WLARGE = -BIG
- WMAG = -BIG
- DO 220 J = NSETB+1,NCOLS
- T = WW(J)
- IF (T.EQ.BIG) GO TO 220
- ITEMP = IBASIS(J)
- JCOL = ABS(ITEMP)
- T1 = DNRM2(MVAL-NSETB,W(INEXT(NSETB),J),1)
- IF (ITEMP.LT.0) THEN
- IF (MOD(IBB(JCOL),2).EQ.0) T = -T
- IF (T.LT.ZERO) GO TO 220
- IF (MVAL.GT.NSETB) T = T1
- IF (T.GT.WLARGE) THEN
- WLARGE = T
- JLARGE = J
- ENDIF
- ELSE
- IF (MVAL.GT.NSETB) T = T1
- IF (ABS(T).GT.WMAG) THEN
- WMAG = ABS(T)
- JMAG = J
- ENDIF
- ENDIF
- 220 CONTINUE
- C
- C Choose magnitude of largest component of gradient for candidate.
- C
- JBIG = 0
- WBIG = ZERO
- IF (WLARGE.GT.ZERO) THEN
- JBIG = JLARGE
- WBIG = WLARGE
- ENDIF
- C
- IF (WMAG.GE.WBIG) THEN
- JBIG = JMAG
- WBIG = WMAG
- ENDIF
- C
- IF (JBIG.EQ.0) THEN
- FOUND = .FALSE.
- IF (IPRINT.GT.0) THEN
- CALL IVOUT(0,I,'('' FOUND NO VARIABLE TO ENTER'')',-4)
- ENDIF
- GO TO 120
- ENDIF
- C
- C See if the incoming column is sufficiently independent. This
- C test is made before an elimination is performed.
- C
- IF (IPRINT.GT.0)
- * CALL IVOUT(1,JBIG,'('' TRY TO BRING IN THIS COL.'')',-4)
- C
- IF (MVAL.LE.NSETB) THEN
- CL1 = DNRM2(MVAL,W(1,JBIG),1)
- CL2 = ABS(WT)*DNRM2(NSETB-MVAL,W(INEXT(MVAL),JBIG),1)
- CL3 = ABS(WT)*DNRM2(MROWS-NSETB,W(INEXT(NSETB),JBIG),1)
- CALL DROTG(CL1,CL2,SC,SS)
- COLABV = ABS(CL1)
- COLBLO = CL3
- ELSE
- CL1 = DNRM2(NSETB,W(1,JBIG),1)
- CL2 = DNRM2(MVAL-NSETB,W(INEXT(NSETB),JBIG),1)
- CL3 = ABS(WT)*DNRM2(MROWS-MVAL,W(INEXT(MVAL),JBIG),1)
- COLABV = CL1
- CALL DROTG(CL2,CL3,SC,SS)
- COLBLO = ABS(CL2)
- ENDIF
- C
- IF (COLBLO.LE.TOLIND*COLABV) THEN
- WW(JBIG) = BIG
- IF (IPRINT.GT.0)
- * CALL IVOUT(0,I,'('' VARIABLE IS DEPENDENT, NOT USED.'')',
- * -4)
- GO TO 210
- ENDIF
- C
- C Swap matrix columns NSETB+1 and JBIG, plus pointer information,
- C and gradient values.
- C
- NSETB = NSETB + 1
- IF (NSETB.NE.JBIG) THEN
- CALL DSWAP(MROWS,W(1,NSETB),1,W(1,JBIG),1)
- CALL DSWAP(1,WW(NSETB),1,WW(JBIG),1)
- ITEMP = IBASIS(NSETB)
- IBASIS(NSETB) = IBASIS(JBIG)
- IBASIS(JBIG) = ITEMP
- ENDIF
- C
- C Eliminate entries below the pivot line in column NSETB.
- C
- IF (MROWS.GT.NSETB) THEN
- DO 230 I = MROWS,NSETB+1,-1
- IF (I.EQ.MVAL+1) GO TO 230
- CALL DROTG(W(I-1,NSETB),W(I,NSETB),SC,SS)
- W(I,NSETB) = ZERO
- CALL DROT(NCOLS-NSETB+1,W(I-1,NSETB+1),MDW,W(I,NSETB+1),
- * MDW,SC,SS)
- 230 CONTINUE
- C
- IF (MVAL.GE.NSETB .AND. MVAL.LT.MROWS) THEN
- CALL DROTG(W(NSETB,NSETB),W(MVAL+1,NSETB),SC,SS)
- W(MVAL+1,NSETB) = ZERO
- CALL DROT(NCOLS-NSETB+1,W(NSETB,NSETB+1),MDW,
- * W(MVAL+1,NSETB+1),MDW,SC,SS)
- ENDIF
- ENDIF
- C
- IF (W(NSETB,NSETB).EQ.ZERO) THEN
- WW(NSETB) = BIG
- NSETB = NSETB - 1
- IF (IPRINT.GT.0) THEN
- CALL IVOUT(0,I,'('' PIVOT IS ZERO, NOT USED.'')',-4)
- ENDIF
- GO TO 210
- ENDIF
- C
- C Check that new variable is moving in the right direction.
- C
- ITEMP = IBASIS(NSETB)
- JCOL = ABS(ITEMP)
- XNEW = (W(NSETB,NCOLS+1)/W(NSETB,NSETB))/ABS(SCL(JCOL))
- IF (ITEMP.LT.0) THEN
- C
- C IF(WW(NSETB).GE.ZERO.AND.XNEW.LE.ZERO) exit(quit)
- C IF(WW(NSETB).LE.ZERO.AND.XNEW.GE.ZERO) exit(quit)
- C
- IF ((WW(NSETB).GE.ZERO.AND.XNEW.LE.ZERO) .OR.
- * (WW(NSETB).LE.ZERO.AND.XNEW.GE.ZERO)) GO TO 240
- ENDIF
- FOUND = .TRUE.
- GO TO 120
- C
- 240 WW(NSETB) = BIG
- NSETB = NSETB - 1
- IF (IPRINT.GT.0)
- * CALL IVOUT(0,I,'('' VARIABLE HAS BAD DIRECTION, NOT USED.'')',
- * -4)
- GO TO 210
- C
- C Solve the triangular system.
- C
- 270 CALL DCOPY(NSETB,W(1,NCOLS+1),1,RW,1)
- DO 280 J = NSETB,1,-1
- RW(J) = RW(J)/W(J,J)
- JCOL = ABS(IBASIS(J))
- T = RW(J)
- IF (MOD(IBB(JCOL),2).EQ.0) RW(J) = -RW(J)
- CALL DAXPY(J-1,-T,W(1,J),1,RW,1)
- RW(J) = RW(J)/ABS(SCL(JCOL))
- 280 CONTINUE
- C
- IF (IPRINT.GT.0) THEN
- CALL DVOUT(NSETB,RW,'('' SOLN. VALUES'')',-4)
- CALL IVOUT(NSETB,IBASIS,'('' COLS. USED'')',-4)
- ENDIF
- C
- IF (LGOPR.EQ.2) THEN
- CALL DCOPY(NSETB,RW,1,X,1)
- DO 450 J = 1,NSETB
- ITEMP = IBASIS(J)
- JCOL = ABS(ITEMP)
- IF (ITEMP.LT.0) THEN
- BOU = ZERO
- ELSE
- BOU = BL(JCOL)
- ENDIF
- C
- IF ((-BOU).NE.BIG) BOU = BOU/ABS(SCL(JCOL))
- IF (X(J).LE.BOU) THEN
- JDROP1 = J
- GO TO 340
- ENDIF
- C
- BOU = BU(JCOL)
- IF (BOU.NE.BIG) BOU = BOU/ABS(SCL(JCOL))
- IF (X(J).GE.BOU) THEN
- JDROP2 = J
- GO TO 340
- ENDIF
- 450 CONTINUE
- GO TO 340
- ENDIF
- C
- C See if the unconstrained solution (obtained by solving the
- C triangular system) satisfies the problem bounds.
- C
- ALPHA = TWO
- BETA = TWO
- X(NSETB) = ZERO
- DO 310 J = 1,NSETB
- ITEMP = IBASIS(J)
- JCOL = ABS(ITEMP)
- T1 = TWO
- T2 = TWO
- IF (ITEMP.LT.0) THEN
- BOU = ZERO
- ELSE
- BOU = BL(JCOL)
- ENDIF
- IF ((-BOU).NE.BIG) BOU = BOU/ABS(SCL(JCOL))
- IF (RW(J).LE.BOU) T1 = (X(J)-BOU)/ (X(J)-RW(J))
- BOU = BU(JCOL)
- IF (BOU.NE.BIG) BOU = BOU/ABS(SCL(JCOL))
- IF (RW(J).GE.BOU) T2 = (BOU-X(J))/ (RW(J)-X(J))
- C
- C If not, then compute a step length so that the variables remain
- C feasible.
- C
- IF (T1.LT.ALPHA) THEN
- ALPHA = T1
- JDROP1 = J
- ENDIF
- C
- IF (T2.LT.BETA) THEN
- BETA = T2
- JDROP2 = J
- ENDIF
- 310 CONTINUE
- C
- CONSTR = ALPHA .LT. TWO .OR. BETA .LT. TWO
- IF (.NOT.CONSTR) THEN
- C
- C Accept the candidate because it satisfies the stated bounds
- C on the variables.
- C
- CALL DCOPY(NSETB,RW,1,X,1)
- GO TO 580
- ENDIF
- C
- C Take a step that is as large as possible with all variables
- C remaining feasible.
- C
- DO 330 J = 1,NSETB
- X(J) = X(J) + MIN(ALPHA,BETA)* (RW(J)-X(J))
- 330 CONTINUE
- C
- IF (ALPHA.LE.BETA) THEN
- JDROP2 = 0
- ELSE
- JDROP1 = 0
- ENDIF
- C
- 340 IF (JDROP1+JDROP2.LE.0 .OR. NSETB.LE.0) GO TO 580
- 350 JDROP = JDROP1 + JDROP2
- ITEMP = IBASIS(JDROP)
- JCOL = ABS(ITEMP)
- IF (JDROP2.GT.0) THEN
- C
- C Variable is at an upper bound. Subtract multiple of this
- C column from right hand side.
- C
- T = BU(JCOL)
- IF (ITEMP.GT.0) THEN
- BU(JCOL) = T - BL(JCOL)
- BL(JCOL) = -T
- ITEMP = -ITEMP
- SCL(JCOL) = -SCL(JCOL)
- DO 360 I = 1,JDROP
- W(I,JDROP) = -W(I,JDROP)
- 360 CONTINUE
- ELSE
- IBB(JCOL) = IBB(JCOL) + 1
- IF (MOD(IBB(JCOL),2).EQ.0) T = -T
- ENDIF
- C
- C Variable is at a lower bound.
- C
- ELSE
- IF (ITEMP.LT.ZERO) THEN
- T = ZERO
- ELSE
- T = -BL(JCOL)
- BU(JCOL) = BU(JCOL) + T
- ITEMP = -ITEMP
- ENDIF
- ENDIF
- C
- CALL DAXPY(JDROP,T,W(1,JDROP),1,W(1,NCOLS+1),1)
- C
- C Move certain columns left to achieve upper Hessenberg form.
- C
- CALL DCOPY(JDROP,W(1,JDROP),1,RW,1)
- DO 370 J = JDROP+1,NSETB
- IBASIS(J-1) = IBASIS(J)
- X(J-1) = X(J)
- CALL DCOPY(J,W(1,J),1,W(1,J-1),1)
- 370 CONTINUE
- C
- IBASIS(NSETB) = ITEMP
- W(1,NSETB) = ZERO
- CALL DCOPY(MROWS-JDROP,W(1,NSETB),0,W(JDROP+1,NSETB),1)
- CALL DCOPY(JDROP,RW,1,W(1,NSETB),1)
- C
- C Transform the matrix from upper Hessenberg form to upper
- C triangular form.
- C
- NSETB = NSETB - 1
- DO 390 I = JDROP,NSETB
- C
- C Look for small pivots and avoid mixing weighted and
- C nonweighted rows.
- C
- IF (I.EQ.MVAL) THEN
- T = ZERO
- DO 380 J = I,NSETB
- JCOL = ABS(IBASIS(J))
- T1 = ABS(W(I,J)*SCL(JCOL))
- IF (T1.GT.T) THEN
- JBIG = J
- T = T1
- ENDIF
- 380 CONTINUE
- GO TO 400
- ENDIF
- CALL DROTG(W(I,I),W(I+1,I),SC,SS)
- W(I+1,I) = ZERO
- CALL DROT(NCOLS-I+1,W(I,I+1),MDW,W(I+1,I+1),MDW,SC,SS)
- 390 CONTINUE
- GO TO 430
- C
- C The triangularization is completed by giving up the Hessenberg
- C form and triangularizing a rectangular matrix.
- C
- 400 CALL DSWAP(MROWS,W(1,I),1,W(1,JBIG),1)
- CALL DSWAP(1,WW(I),1,WW(JBIG),1)
- CALL DSWAP(1,X(I),1,X(JBIG),1)
- ITEMP = IBASIS(I)
- IBASIS(I) = IBASIS(JBIG)
- IBASIS(JBIG) = ITEMP
- JBIG = I
- DO 420 J = JBIG,NSETB
- DO 410 I = J+1,MROWS
- CALL DROTG(W(J,J),W(I,J),SC,SS)
- W(I,J) = ZERO
- CALL DROT(NCOLS-J+1,W(J,J+1),MDW,W(I,J+1),MDW,SC,SS)
- 410 CONTINUE
- 420 CONTINUE
- C
- C See if the remaining coefficients are feasible. They should be
- C because of the way MIN(ALPHA,BETA) was chosen. Any that are not
- C feasible will be set to their bounds and appropriately translated.
- C
- 430 JDROP1 = 0
- JDROP2 = 0
- LGOPR = 2
- GO TO 270
- C
- C Find a variable to become non-active.
- C
- 120 IF (FOUND) THEN
- LGOPR = 1
- GO TO 270
- ENDIF
- C
- C Rescale and translate variables.
- C
- IGOPR = 2
- 130 CALL DCOPY(NSETB,X,1,RW,1)
- CALL DCOPY(NCOLS,ZERO,0,X,1)
- DO 140 J = 1,NSETB
- JCOL = ABS(IBASIS(J))
- X(JCOL) = RW(J)*ABS(SCL(JCOL))
- 140 CONTINUE
- C
- DO 150 J = 1,NCOLS
- IF (MOD(IBB(J),2).EQ.0) X(J) = BU(J) - X(J)
- 150 CONTINUE
- C
- DO 160 J = 1,NCOLS
- JCOL = IBASIS(J)
- IF (JCOL.LT.0) X(-JCOL) = BL(-JCOL) + X(-JCOL)
- 160 CONTINUE
- C
- DO 170 J = 1,NCOLS
- IF (SCL(J).LT.ZERO) X(J) = -X(J)
- 170 CONTINUE
- C
- I = MAX(NSETB,MVAL)
- RNORM = DNRM2(MROWS-I,W(INEXT(I),NCOLS+1),1)
- C
- IF (IGOPR.EQ.2) MODE = NSETB
- RETURN
- END
|