dbsppp.f 3.5 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394
  1. *DECK DBSPPP
  2. SUBROUTINE DBSPPP (T, A, N, K, LDC, C, XI, LXI, WORK)
  3. C***BEGIN PROLOGUE DBSPPP
  4. C***PURPOSE Convert the B-representation of a B-spline to the piecewise
  5. C polynomial (PP) form.
  6. C***LIBRARY SLATEC
  7. C***CATEGORY E3, K6
  8. C***TYPE DOUBLE PRECISION (BSPPP-S, DBSPPP-D)
  9. C***KEYWORDS B-SPLINE, PIECEWISE POLYNOMIAL
  10. C***AUTHOR Amos, D. E., (SNLA)
  11. C***DESCRIPTION
  12. C
  13. C Written by Carl de Boor and modified by D. E. Amos
  14. C
  15. C Abstract **** a double precision routine ****
  16. C DBSPPP is the BSPLPP routine of the reference.
  17. C
  18. C DBSPPP converts the B-representation (T,A,N,K) to the
  19. C piecewise polynomial (PP) form (C,XI,LXI,K) for use with
  20. C DPPVAL. Here XI(*), the break point array of length LXI, is
  21. C the knot array T(*) with multiplicities removed. The columns
  22. C of the matrix C(I,J) contain the right Taylor derivatives
  23. C for the polynomial expansion about XI(J) for the intervals
  24. C XI(J) .LE. X .LE. XI(J+1), I=1,K, J=1,LXI. Function DPPVAL
  25. C makes this evaluation at a specified point X in
  26. C XI(1) .LE. X .LE. XI(LXI+1)
  27. C
  28. C Description of Arguments
  29. C
  30. C Input T,A are double precision
  31. C T - knot vector of length N+K
  32. C A - B-spline coefficient vector of length N
  33. C N - number of B-spline coefficients
  34. C N = sum of knot multiplicities-K
  35. C K - order of the B-spline, K .GE. 1
  36. C LDC - leading dimension of C, LDC .GE. K
  37. C
  38. C Output C,XI,WORK are double precision
  39. C C - matrix of dimension at least (K,LXI) containing
  40. C right derivatives at break points
  41. C XI - XI break point vector of length LXI+1
  42. C LXI - number of break points, LXI .LE. N-K+1
  43. C WORK - work vector of length K*(N+3)
  44. C
  45. C Error Conditions
  46. C Improper input is a fatal error
  47. C
  48. C***REFERENCES Carl de Boor, Package for calculating with B-splines,
  49. C SIAM Journal on Numerical Analysis 14, 3 (June 1977),
  50. C pp. 441-472.
  51. C***ROUTINES CALLED DBSPDR, DBSPEV, XERMSG
  52. C***REVISION HISTORY (YYMMDD)
  53. C 800901 DATE WRITTEN
  54. C 890831 Modified array declarations. (WRB)
  55. C 890831 REVISION DATE from Version 3.2
  56. C 891214 Prologue converted to Version 4.0 format. (BAB)
  57. C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
  58. C 920501 Reformatted the REFERENCES section. (WRB)
  59. C***END PROLOGUE DBSPPP
  60. C
  61. INTEGER ILEFT, INEV, K, LDC, LXI, N, NK
  62. DOUBLE PRECISION A, C, T, WORK, XI
  63. C DIMENSION T(N+K),XI(LXI+1),C(LDC,*)
  64. C HERE, * = THE FINAL VALUE OF THE OUTPUT PARAMETER LXI.
  65. DIMENSION T(*), A(*), WORK(*), XI(*), C(LDC,*)
  66. C***FIRST EXECUTABLE STATEMENT DBSPPP
  67. IF(K.LT.1) GO TO 100
  68. IF(N.LT.K) GO TO 105
  69. IF(LDC.LT.K) GO TO 110
  70. CALL DBSPDR(T, A, N, K, K, WORK)
  71. LXI = 0
  72. XI(1) = T(K)
  73. INEV = 1
  74. NK = N*K + 1
  75. DO 10 ILEFT=K,N
  76. IF (T(ILEFT+1).EQ.T(ILEFT)) GO TO 10
  77. LXI = LXI + 1
  78. XI(LXI+1) = T(ILEFT+1)
  79. CALL DBSPEV(T,WORK(1),N,K, K,XI(LXI),INEV,C(1,LXI),WORK(NK))
  80. 10 CONTINUE
  81. RETURN
  82. 100 CONTINUE
  83. CALL XERMSG ('SLATEC', 'DBSPPP', 'K DOES NOT SATISFY K.GE.1', 2,
  84. + 1)
  85. RETURN
  86. 105 CONTINUE
  87. CALL XERMSG ('SLATEC', 'DBSPPP', 'N DOES NOT SATISFY N.GE.K', 2,
  88. + 1)
  89. RETURN
  90. 110 CONTINUE
  91. CALL XERMSG ('SLATEC', 'DBSPPP', 'LDC DOES NOT SATISFY LDC.GE.K',
  92. + 2, 1)
  93. RETURN
  94. END