dbspvd.f 5.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162
  1. *DECK DBSPVD
  2. SUBROUTINE DBSPVD (T, K, NDERIV, X, ILEFT, LDVNIK, VNIKX, WORK)
  3. C***BEGIN PROLOGUE DBSPVD
  4. C***PURPOSE Calculate the value and all derivatives of order less than
  5. C NDERIV of all basis functions which do not vanish at X.
  6. C***LIBRARY SLATEC
  7. C***CATEGORY E3, K6
  8. C***TYPE DOUBLE PRECISION (BSPVD-S, DBSPVD-D)
  9. C***KEYWORDS DIFFERENTIATION OF B-SPLINE, EVALUATION OF B-SPLINE
  10. C***AUTHOR Amos, D. E., (SNLA)
  11. C***DESCRIPTION
  12. C
  13. C Written by Carl de Boor and modified by D. E. Amos
  14. C
  15. C Abstract **** a double precision routine ****
  16. C
  17. C DBSPVD is the BSPLVD routine of the reference.
  18. C
  19. C DBSPVD calculates the value and all derivatives of order
  20. C less than NDERIV of all basis functions which do not
  21. C (possibly) vanish at X. ILEFT is input such that
  22. C T(ILEFT) .LE. X .LT. T(ILEFT+1). A call to INTRV(T,N+1,X,
  23. C ILO,ILEFT,MFLAG) will produce the proper ILEFT. The output of
  24. C DBSPVD is a matrix VNIKX(I,J) of dimension at least (K,NDERIV)
  25. C whose columns contain the K nonzero basis functions and
  26. C their NDERIV-1 right derivatives at X, I=1,K, J=1,NDERIV.
  27. C These basis functions have indices ILEFT-K+I, I=1,K,
  28. C K .LE. ILEFT .LE. N. The nonzero part of the I-th basis
  29. C function lies in (T(I),T(I+K)), I=1,N).
  30. C
  31. C If X=T(ILEFT+1) then VNIKX contains left limiting values
  32. C (left derivatives) at T(ILEFT+1). In particular, ILEFT = N
  33. C produces left limiting values at the right end point
  34. C X=T(N+1). To obtain left limiting values at T(I), I=K+1,N+1,
  35. C set X= next lower distinct knot, call INTRV to get ILEFT,
  36. C set X=T(I), and then call DBSPVD.
  37. C
  38. C Description of Arguments
  39. C Input T,X are double precision
  40. C T - knot vector of length N+K, where
  41. C N = number of B-spline basis functions
  42. C N = sum of knot multiplicities-K
  43. C K - order of the B-spline, K .GE. 1
  44. C NDERIV - number of derivatives = NDERIV-1,
  45. C 1 .LE. NDERIV .LE. K
  46. C X - argument of basis functions,
  47. C T(K) .LE. X .LE. T(N+1)
  48. C ILEFT - largest integer such that
  49. C T(ILEFT) .LE. X .LT. T(ILEFT+1)
  50. C LDVNIK - leading dimension of matrix VNIKX
  51. C
  52. C Output VNIKX,WORK are double precision
  53. C VNIKX - matrix of dimension at least (K,NDERIV) contain-
  54. C ing the nonzero basis functions at X and their
  55. C derivatives columnwise.
  56. C WORK - a work vector of length (K+1)*(K+2)/2
  57. C
  58. C Error Conditions
  59. C Improper input is a fatal error
  60. C
  61. C***REFERENCES Carl de Boor, Package for calculating with B-splines,
  62. C SIAM Journal on Numerical Analysis 14, 3 (June 1977),
  63. C pp. 441-472.
  64. C***ROUTINES CALLED DBSPVN, XERMSG
  65. C***REVISION HISTORY (YYMMDD)
  66. C 800901 DATE WRITTEN
  67. C 890531 Changed all specific intrinsics to generic. (WRB)
  68. C 890831 Modified array declarations. (WRB)
  69. C 890831 REVISION DATE from Version 3.2
  70. C 891214 Prologue converted to Version 4.0 format. (BAB)
  71. C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
  72. C 920501 Reformatted the REFERENCES section. (WRB)
  73. C***END PROLOGUE DBSPVD
  74. C
  75. INTEGER I,IDERIV,ILEFT,IPKMD,J,JJ,JLOW,JM,JP1MID,K,KMD, KP1, L,
  76. 1 LDUMMY, M, MHIGH, NDERIV
  77. DOUBLE PRECISION FACTOR, FKMD, T, V, VNIKX, WORK, X
  78. C DIMENSION T(ILEFT+K), WORK((K+1)*(K+2)/2)
  79. C A(I,J) = WORK(I+J*(J+1)/2), I=1,J+1 J=1,K-1
  80. C A(I,K) = W0RK(I+K*(K-1)/2) I=1.K
  81. C WORK(1) AND WORK((K+1)*(K+2)/2) ARE NOT USED.
  82. DIMENSION T(*), VNIKX(LDVNIK,*), WORK(*)
  83. C***FIRST EXECUTABLE STATEMENT DBSPVD
  84. IF(K.LT.1) GO TO 200
  85. IF(NDERIV.LT.1 .OR. NDERIV.GT.K) GO TO 205
  86. IF(LDVNIK.LT.K) GO TO 210
  87. IDERIV = NDERIV
  88. KP1 = K + 1
  89. JJ = KP1 - IDERIV
  90. CALL DBSPVN(T, JJ, K, 1, X, ILEFT, VNIKX, WORK, IWORK)
  91. IF (IDERIV.EQ.1) GO TO 100
  92. MHIGH = IDERIV
  93. DO 20 M=2,MHIGH
  94. JP1MID = 1
  95. DO 10 J=IDERIV,K
  96. VNIKX(J,IDERIV) = VNIKX(JP1MID,1)
  97. JP1MID = JP1MID + 1
  98. 10 CONTINUE
  99. IDERIV = IDERIV - 1
  100. JJ = KP1 - IDERIV
  101. CALL DBSPVN(T, JJ, K, 2, X, ILEFT, VNIKX, WORK, IWORK)
  102. 20 CONTINUE
  103. C
  104. JM = KP1*(KP1+1)/2
  105. DO 30 L = 1,JM
  106. WORK(L) = 0.0D0
  107. 30 CONTINUE
  108. C A(I,I) = WORK(I*(I+3)/2) = 1.0 I = 1,K
  109. L = 2
  110. J = 0
  111. DO 40 I = 1,K
  112. J = J + L
  113. WORK(J) = 1.0D0
  114. L = L + 1
  115. 40 CONTINUE
  116. KMD = K
  117. DO 90 M=2,MHIGH
  118. KMD = KMD - 1
  119. FKMD = KMD
  120. I = ILEFT
  121. J = K
  122. JJ = J*(J+1)/2
  123. JM = JJ - J
  124. DO 60 LDUMMY=1,KMD
  125. IPKMD = I + KMD
  126. FACTOR = FKMD/(T(IPKMD)-T(I))
  127. DO 50 L=1,J
  128. WORK(L+JJ) = (WORK(L+JJ)-WORK(L+JM))*FACTOR
  129. 50 CONTINUE
  130. I = I - 1
  131. J = J - 1
  132. JJ = JM
  133. JM = JM - J
  134. 60 CONTINUE
  135. C
  136. DO 80 I=1,K
  137. V = 0.0D0
  138. JLOW = MAX(I,M)
  139. JJ = JLOW*(JLOW+1)/2
  140. DO 70 J=JLOW,K
  141. V = WORK(I+JJ)*VNIKX(J,M) + V
  142. JJ = JJ + J + 1
  143. 70 CONTINUE
  144. VNIKX(I,M) = V
  145. 80 CONTINUE
  146. 90 CONTINUE
  147. 100 RETURN
  148. C
  149. C
  150. 200 CONTINUE
  151. CALL XERMSG ('SLATEC', 'DBSPVD', 'K DOES NOT SATISFY K.GE.1', 2,
  152. + 1)
  153. RETURN
  154. 205 CONTINUE
  155. CALL XERMSG ('SLATEC', 'DBSPVD',
  156. + 'NDERIV DOES NOT SATISFY 1.LE.NDERIV.LE.K', 2, 1)
  157. RETURN
  158. 210 CONTINUE
  159. CALL XERMSG ('SLATEC', 'DBSPVD',
  160. + 'LDVNIK DOES NOT SATISFY LDVNIK.GE.K', 2, 1)
  161. RETURN
  162. END