123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160 |
- *DECK DCHFEV
- SUBROUTINE DCHFEV (X1, X2, F1, F2, D1, D2, NE, XE, FE, NEXT, IERR)
- C***BEGIN PROLOGUE DCHFEV
- C***PURPOSE Evaluate a cubic polynomial given in Hermite form at an
- C array of points. While designed for use by DPCHFE, it may
- C be useful directly as an evaluator for a piecewise cubic
- C Hermite function in applications, such as graphing, where
- C the interval is known in advance.
- C***LIBRARY SLATEC (PCHIP)
- C***CATEGORY E3
- C***TYPE DOUBLE PRECISION (CHFEV-S, DCHFEV-D)
- C***KEYWORDS CUBIC HERMITE EVALUATION, CUBIC POLYNOMIAL EVALUATION,
- C PCHIP
- C***AUTHOR Fritsch, F. N., (LLNL)
- C Lawrence Livermore National Laboratory
- C P.O. Box 808 (L-316)
- C Livermore, CA 94550
- C FTS 532-4275, (510) 422-4275
- C***DESCRIPTION
- C
- C DCHFEV: Cubic Hermite Function EValuator
- C
- C Evaluates the cubic polynomial determined by function values
- C F1,F2 and derivatives D1,D2 on interval (X1,X2) at the points
- C XE(J), J=1(1)NE.
- C
- C ----------------------------------------------------------------------
- C
- C Calling sequence:
- C
- C INTEGER NE, NEXT(2), IERR
- C DOUBLE PRECISION X1, X2, F1, F2, D1, D2, XE(NE), FE(NE)
- C
- C CALL DCHFEV (X1,X2, F1,F2, D1,D2, NE, XE, FE, NEXT, IERR)
- C
- C Parameters:
- C
- C X1,X2 -- (input) endpoints of interval of definition of cubic.
- C (Error return if X1.EQ.X2 .)
- C
- C F1,F2 -- (input) values of function at X1 and X2, respectively.
- C
- C D1,D2 -- (input) values of derivative at X1 and X2, respectively.
- C
- C NE -- (input) number of evaluation points. (Error return if
- C NE.LT.1 .)
- C
- C XE -- (input) real*8 array of points at which the function is to
- C be evaluated. If any of the XE are outside the interval
- C [X1,X2], a warning error is returned in NEXT.
- C
- C FE -- (output) real*8 array of values of the cubic function
- C defined by X1,X2, F1,F2, D1,D2 at the points XE.
- C
- C NEXT -- (output) integer array indicating number of extrapolation
- C points:
- C NEXT(1) = number of evaluation points to left of interval.
- C NEXT(2) = number of evaluation points to right of interval.
- C
- C IERR -- (output) error flag.
- C Normal return:
- C IERR = 0 (no errors).
- C "Recoverable" errors:
- C IERR = -1 if NE.LT.1 .
- C IERR = -2 if X1.EQ.X2 .
- C (The FE-array has not been changed in either case.)
- C
- C***REFERENCES (NONE)
- C***ROUTINES CALLED XERMSG
- C***REVISION HISTORY (YYMMDD)
- C 811019 DATE WRITTEN
- C 820803 Minor cosmetic changes for release 1.
- C 870813 Corrected XERROR calls for d.p. names(s).
- C 890206 Corrected XERROR calls.
- C 890411 Added SAVE statements (Vers. 3.2).
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890703 Corrected category record. (WRB)
- C 890831 Modified array declarations. (WRB)
- C 891006 Cosmetic changes to prologue. (WRB)
- C 891006 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
- C***END PROLOGUE DCHFEV
- C Programming notes:
- C
- C To produce a single precision version, simply:
- C a. Change DCHFEV to CHFEV wherever it occurs,
- C b. Change the double precision declaration to real, and
- C c. Change the constant ZERO to single precision.
- C
- C DECLARE ARGUMENTS.
- C
- INTEGER NE, NEXT(2), IERR
- DOUBLE PRECISION X1, X2, F1, F2, D1, D2, XE(*), FE(*)
- C
- C DECLARE LOCAL VARIABLES.
- C
- INTEGER I
- DOUBLE PRECISION C2, C3, DEL1, DEL2, DELTA, H, X, XMI, XMA,
- * ZERO
- SAVE ZERO
- DATA ZERO /0.D0/
- C
- C VALIDITY-CHECK ARGUMENTS.
- C
- C***FIRST EXECUTABLE STATEMENT DCHFEV
- IF (NE .LT. 1) GO TO 5001
- H = X2 - X1
- IF (H .EQ. ZERO) GO TO 5002
- C
- C INITIALIZE.
- C
- IERR = 0
- NEXT(1) = 0
- NEXT(2) = 0
- XMI = MIN(ZERO, H)
- XMA = MAX(ZERO, H)
- C
- C COMPUTE CUBIC COEFFICIENTS (EXPANDED ABOUT X1).
- C
- DELTA = (F2 - F1)/H
- DEL1 = (D1 - DELTA)/H
- DEL2 = (D2 - DELTA)/H
- C (DELTA IS NO LONGER NEEDED.)
- C2 = -(DEL1+DEL1 + DEL2)
- C3 = (DEL1 + DEL2)/H
- C (H, DEL1 AND DEL2 ARE NO LONGER NEEDED.)
- C
- C EVALUATION LOOP.
- C
- DO 500 I = 1, NE
- X = XE(I) - X1
- FE(I) = F1 + X*(D1 + X*(C2 + X*C3))
- C COUNT EXTRAPOLATION POINTS.
- IF ( X.LT.XMI ) NEXT(1) = NEXT(1) + 1
- IF ( X.GT.XMA ) NEXT(2) = NEXT(2) + 1
- C (NOTE REDUNDANCY--IF EITHER CONDITION IS TRUE, OTHER IS FALSE.)
- 500 CONTINUE
- C
- C NORMAL RETURN.
- C
- RETURN
- C
- C ERROR RETURNS.
- C
- 5001 CONTINUE
- C NE.LT.1 RETURN.
- IERR = -1
- CALL XERMSG ('SLATEC', 'DCHFEV',
- + 'NUMBER OF EVALUATION POINTS LESS THAN ONE', IERR, 1)
- RETURN
- C
- 5002 CONTINUE
- C X1.EQ.X2 RETURN.
- IERR = -2
- CALL XERMSG ('SLATEC', 'DCHFEV', 'INTERVAL ENDPOINTS EQUAL',
- + IERR, 1)
- RETURN
- C------------- LAST LINE OF DCHFEV FOLLOWS -----------------------------
- END
|