dei.f 1022 B

1234567891011121314151617181920212223242526272829303132333435
  1. *DECK DEI
  2. DOUBLE PRECISION FUNCTION DEI (X)
  3. C***BEGIN PROLOGUE DEI
  4. C***PURPOSE Compute the exponential integral Ei(X).
  5. C***LIBRARY SLATEC (FNLIB)
  6. C***CATEGORY C5
  7. C***TYPE DOUBLE PRECISION (EI-S, DEI-D)
  8. C***KEYWORDS EI FUNCTION, EXPONENTIAL INTEGRAL, FNLIB,
  9. C SPECIAL FUNCTIONS
  10. C***AUTHOR Fullerton, W., (LANL)
  11. C***DESCRIPTION
  12. C
  13. C DEI calculates the double precision exponential integral, Ei(X), for
  14. C positive double precision argument X and the Cauchy principal value
  15. C for negative X. If principal values are used everywhere, then, for
  16. C all X,
  17. C
  18. C Ei(X) = -E1(-X)
  19. C or
  20. C E1(X) = -Ei(-X).
  21. C
  22. C***REFERENCES (NONE)
  23. C***ROUTINES CALLED DE1
  24. C***REVISION HISTORY (YYMMDD)
  25. C 770701 DATE WRITTEN
  26. C 891115 Modified prologue description. (WRB)
  27. C 891115 REVISION DATE from Version 3.2
  28. C 891214 Prologue converted to Version 4.0 format. (BAB)
  29. C***END PROLOGUE DEI
  30. DOUBLE PRECISION X, DE1
  31. C***FIRST EXECUTABLE STATEMENT DEI
  32. DEI = -DE1(-X)
  33. C
  34. RETURN
  35. END