dexint.f 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336
  1. *DECK DEXINT
  2. SUBROUTINE DEXINT (X, N, KODE, M, TOL, EN, NZ, IERR)
  3. C***BEGIN PROLOGUE DEXINT
  4. C***PURPOSE Compute an M member sequence of exponential integrals
  5. C E(N+K,X), K=0,1,...,M-1 for N .GE. 1 and X .GE. 0.
  6. C***LIBRARY SLATEC
  7. C***CATEGORY C5
  8. C***TYPE DOUBLE PRECISION (EXINT-S, DEXINT-D)
  9. C***KEYWORDS EXPONENTIAL INTEGRAL, SPECIAL FUNCTIONS
  10. C***AUTHOR Amos, D. E., (SNLA)
  11. C***DESCRIPTION
  12. C
  13. C DEXINT computes M member sequences of exponential integrals
  14. C E(N+K,X), K=0,1,...,M-1 for N .GE. 1 and X .GE. 0. The
  15. C exponential integral is defined by
  16. C
  17. C E(N,X)=integral on (1,infinity) of EXP(-XT)/T**N
  18. C
  19. C where X=0.0 and N=1 cannot occur simultaneously. Formulas
  20. C and notation are found in the NBS Handbook of Mathematical
  21. C Functions (ref. 1).
  22. C
  23. C The power series is implemented for X .LE. XCUT and the
  24. C confluent hypergeometric representation
  25. C
  26. C E(A,X) = EXP(-X)*(X**(A-1))*U(A,A,X)
  27. C
  28. C is computed for X .GT. XCUT. Since sequences are computed in
  29. C a stable fashion by recurring away from X, A is selected as
  30. C the integer closest to X within the constraint N .LE. A .LE.
  31. C N+M-1. For the U computation, A is further modified to be the
  32. C nearest even integer. Indices are carried forward or
  33. C backward by the two term recursion relation
  34. C
  35. C K*E(K+1,X) + X*E(K,X) = EXP(-X)
  36. C
  37. C once E(A,X) is computed. The U function is computed by means
  38. C of the backward recursive Miller algorithm applied to the
  39. C three term contiguous relation for U(A+K,A,X), K=0,1,...
  40. C This produces accurate ratios and determines U(A+K,A,X), and
  41. C hence E(A,X), to within a multiplicative constant C.
  42. C Another contiguous relation applied to C*U(A,A,X) and
  43. C C*U(A+1,A,X) gets C*U(A+1,A+1,X), a quantity proportional to
  44. C E(A+1,X). The normalizing constant C is obtained from the
  45. C two term recursion relation above with K=A.
  46. C
  47. C The maximum number of significant digits obtainable
  48. C is the smaller of 14 and the number of digits carried in
  49. C double precision arithmetic.
  50. C
  51. C Description of Arguments
  52. C
  53. C Input * X and TOL are double precision *
  54. C X X .GT. 0.0 for N=1 and X .GE. 0.0 for N .GE. 2
  55. C N order of the first member of the sequence, N .GE. 1
  56. C (X=0.0 and N=1 is an error)
  57. C KODE a selection parameter for scaled values
  58. C KODE=1 returns E(N+K,X), K=0,1,...,M-1.
  59. C =2 returns EXP(X)*E(N+K,X), K=0,1,...,M-1.
  60. C M number of exponential integrals in the sequence,
  61. C M .GE. 1
  62. C TOL relative accuracy wanted, ETOL .LE. TOL .LE. 0.1
  63. C ETOL is the larger of double precision unit
  64. C roundoff = D1MACH(4) and 1.0D-18
  65. C
  66. C Output * EN is a double precision vector *
  67. C EN a vector of dimension at least M containing values
  68. C EN(K) = E(N+K-1,X) or EXP(X)*E(N+K-1,X), K=1,M
  69. C depending on KODE
  70. C NZ underflow indicator
  71. C NZ=0 a normal return
  72. C NZ=M X exceeds XLIM and an underflow occurs.
  73. C EN(K)=0.0D0 , K=1,M returned on KODE=1
  74. C IERR error flag
  75. C IERR=0, normal return, computation completed
  76. C IERR=1, input error, no computation
  77. C IERR=2, error, no computation
  78. C algorithm termination condition not met
  79. C
  80. C***REFERENCES M. Abramowitz and I. A. Stegun, Handbook of
  81. C Mathematical Functions, NBS AMS Series 55, U.S. Dept.
  82. C of Commerce, 1955.
  83. C D. E. Amos, Computation of exponential integrals, ACM
  84. C Transactions on Mathematical Software 6, (1980),
  85. C pp. 365-377 and pp. 420-428.
  86. C***ROUTINES CALLED D1MACH, DPSIXN, I1MACH
  87. C***REVISION HISTORY (YYMMDD)
  88. C 800501 DATE WRITTEN
  89. C 890531 Changed all specific intrinsics to generic. (WRB)
  90. C 890531 REVISION DATE from Version 3.2
  91. C 891214 Prologue converted to Version 4.0 format. (BAB)
  92. C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
  93. C 900326 Removed duplicate information from DESCRIPTION section.
  94. C (WRB)
  95. C 910408 Updated the REFERENCES section. (WRB)
  96. C 920207 Updated with code with a revision date of 880811 from
  97. C D. Amos. Included correction of argument list. (WRB)
  98. C 920501 Reformatted the REFERENCES section. (WRB)
  99. C***END PROLOGUE DEXINT
  100. DOUBLE PRECISION A,AA,AAMS,AH,AK,AT,B,BK,BT,CC,CNORM,CT,EM,EMX,EN,
  101. 1 ETOL,FNM,FX,PT,P1,P2,S,TOL,TX,X,XCUT,XLIM,XTOL,Y,
  102. 2 YT,Y1,Y2
  103. DOUBLE PRECISION D1MACH,DPSIXN
  104. INTEGER I,IC,ICASE,ICT,IERR,IK,IND,IX,I1M,JSET,K,KK,KN,KODE,KS,M,
  105. 1 ML,MU,N,ND,NM,NZ
  106. INTEGER I1MACH
  107. DIMENSION EN(*), A(99), B(99), Y(2)
  108. SAVE XCUT
  109. DATA XCUT / 2.0D0 /
  110. C***FIRST EXECUTABLE STATEMENT DEXINT
  111. IERR = 0
  112. NZ = 0
  113. ETOL = MAX(D1MACH(4),0.5D-18)
  114. IF (X.LT.0.0D0) IERR = 1
  115. IF (N.LT.1) IERR = 1
  116. IF (KODE.LT.1 .OR. KODE.GT.2) IERR = 1
  117. IF (M.LT.1) IERR = 1
  118. IF (TOL.LT.ETOL .OR. TOL.GT.0.1D0) IERR = 1
  119. IF (X.EQ.0.0D0 .AND. N.EQ.1) IERR = 1
  120. IF(IERR.NE.0) RETURN
  121. I1M = -I1MACH(15)
  122. PT = 2.3026D0*I1M*D1MACH(5)
  123. XLIM = PT - 6.907755D0
  124. BT = PT + (N+M-1)
  125. IF (BT.GT.1000.0D0) XLIM = PT - LOG(BT)
  126. C
  127. IF (X.GT.XCUT) GO TO 100
  128. IF (X.EQ.0.0D0 .AND. N.GT.1) GO TO 80
  129. C-----------------------------------------------------------------------
  130. C SERIES FOR E(N,X) FOR X.LE.XCUT
  131. C-----------------------------------------------------------------------
  132. TX = X + 0.5D0
  133. IX = TX
  134. C-----------------------------------------------------------------------
  135. C ICASE=1 MEANS INTEGER CLOSEST TO X IS 2 AND N=1
  136. C ICASE=2 MEANS INTEGER CLOSEST TO X IS 0,1, OR 2 AND N.GE.2
  137. C-----------------------------------------------------------------------
  138. ICASE = 2
  139. IF (IX.GT.N) ICASE = 1
  140. NM = N - ICASE + 1
  141. ND = NM + 1
  142. IND = 3 - ICASE
  143. MU = M - IND
  144. ML = 1
  145. KS = ND
  146. FNM = NM
  147. S = 0.0D0
  148. XTOL = 3.0D0*TOL
  149. IF (ND.EQ.1) GO TO 10
  150. XTOL = 0.3333D0*TOL
  151. S = 1.0D0/FNM
  152. 10 CONTINUE
  153. AA = 1.0D0
  154. AK = 1.0D0
  155. IC = 35
  156. IF (X.LT.ETOL) IC = 1
  157. DO 50 I=1,IC
  158. AA = -AA*X/AK
  159. IF (I.EQ.NM) GO TO 30
  160. S = S - AA/(AK-FNM)
  161. IF (ABS(AA).LE.XTOL*ABS(S)) GO TO 20
  162. AK = AK + 1.0D0
  163. GO TO 50
  164. 20 CONTINUE
  165. IF (I.LT.2) GO TO 40
  166. IF (ND-2.GT.I .OR. I.GT.ND-1) GO TO 60
  167. AK = AK + 1.0D0
  168. GO TO 50
  169. 30 S = S + AA*(-LOG(X)+DPSIXN(ND))
  170. XTOL = 3.0D0*TOL
  171. 40 AK = AK + 1.0D0
  172. 50 CONTINUE
  173. IF (IC.NE.1) GO TO 340
  174. 60 IF (ND.EQ.1) S = S + (-LOG(X)+DPSIXN(1))
  175. IF (KODE.EQ.2) S = S*EXP(X)
  176. EN(1) = S
  177. EMX = 1.0D0
  178. IF (M.EQ.1) GO TO 70
  179. EN(IND) = S
  180. AA = KS
  181. IF (KODE.EQ.1) EMX = EXP(-X)
  182. GO TO (220, 240), ICASE
  183. 70 IF (ICASE.EQ.2) RETURN
  184. IF (KODE.EQ.1) EMX = EXP(-X)
  185. EN(1) = (EMX-S)/X
  186. RETURN
  187. 80 CONTINUE
  188. DO 90 I=1,M
  189. EN(I) = 1.0D0/(N+I-2)
  190. 90 CONTINUE
  191. RETURN
  192. C-----------------------------------------------------------------------
  193. C BACKWARD RECURSIVE MILLER ALGORITHM FOR
  194. C E(N,X)=EXP(-X)*(X**(N-1))*U(N,N,X)
  195. C WITH RECURSION AWAY FROM N=INTEGER CLOSEST TO X.
  196. C U(A,B,X) IS THE SECOND CONFLUENT HYPERGEOMETRIC FUNCTION
  197. C-----------------------------------------------------------------------
  198. 100 CONTINUE
  199. EMX = 1.0D0
  200. IF (KODE.EQ.2) GO TO 130
  201. IF (X.LE.XLIM) GO TO 120
  202. NZ = M
  203. DO 110 I=1,M
  204. EN(I) = 0.0D0
  205. 110 CONTINUE
  206. RETURN
  207. 120 EMX = EXP(-X)
  208. 130 CONTINUE
  209. TX = X + 0.5D0
  210. IX = TX
  211. KN = N + M - 1
  212. IF (KN.LE.IX) GO TO 140
  213. IF (N.LT.IX .AND. IX.LT.KN) GO TO 170
  214. IF (N.GE.IX) GO TO 160
  215. GO TO 340
  216. 140 ICASE = 1
  217. KS = KN
  218. ML = M - 1
  219. MU = -1
  220. IND = M
  221. IF (KN.GT.1) GO TO 180
  222. 150 KS = 2
  223. ICASE = 3
  224. GO TO 180
  225. 160 ICASE = 2
  226. IND = 1
  227. KS = N
  228. MU = M - 1
  229. IF (N.GT.1) GO TO 180
  230. IF (KN.EQ.1) GO TO 150
  231. IX = 2
  232. 170 ICASE = 1
  233. KS = IX
  234. ML = IX - N
  235. IND = ML + 1
  236. MU = KN - IX
  237. 180 CONTINUE
  238. IK = KS/2
  239. AH = IK
  240. JSET = 1 + KS - (IK+IK)
  241. C-----------------------------------------------------------------------
  242. C START COMPUTATION FOR
  243. C EN(IND) = C*U( A , A ,X) JSET=1
  244. C EN(IND) = C*U(A+1,A+1,X) JSET=2
  245. C FOR AN EVEN INTEGER A.
  246. C-----------------------------------------------------------------------
  247. IC = 0
  248. AA = AH + AH
  249. AAMS = AA - 1.0D0
  250. AAMS = AAMS*AAMS
  251. TX = X + X
  252. FX = TX + TX
  253. AK = AH
  254. XTOL = TOL
  255. IF (TOL.LE.1.0D-3) XTOL = 20.0D0*TOL
  256. CT = AAMS + FX*AH
  257. EM = (AH+1.0D0)/((X+AA)*XTOL*SQRT(CT))
  258. BK = AA
  259. CC = AH*AH
  260. C-----------------------------------------------------------------------
  261. C FORWARD RECURSION FOR P(IC),P(IC+1) AND INDEX IC FOR BACKWARD
  262. C RECURSION
  263. C-----------------------------------------------------------------------
  264. P1 = 0.0D0
  265. P2 = 1.0D0
  266. 190 CONTINUE
  267. IF (IC.EQ.99) GO TO 340
  268. IC = IC + 1
  269. AK = AK + 1.0D0
  270. AT = BK/(BK+AK+CC+IC)
  271. BK = BK + AK + AK
  272. A(IC) = AT
  273. BT = (AK+AK+X)/(AK+1.0D0)
  274. B(IC) = BT
  275. PT = P2
  276. P2 = BT*P2 - AT*P1
  277. P1 = PT
  278. CT = CT + FX
  279. EM = EM*AT*(1.0D0-TX/CT)
  280. IF (EM*(AK+1.0D0).GT.P1*P1) GO TO 190
  281. ICT = IC
  282. KK = IC + 1
  283. BT = TX/(CT+FX)
  284. Y2 = (BK/(BK+CC+KK))*(P1/P2)*(1.0D0-BT+0.375D0*BT*BT)
  285. Y1 = 1.0D0
  286. C-----------------------------------------------------------------------
  287. C BACKWARD RECURRENCE FOR
  288. C Y1= C*U( A ,A,X)
  289. C Y2= C*(A/(1+A/2))*U(A+1,A,X)
  290. C-----------------------------------------------------------------------
  291. DO 200 K=1,ICT
  292. KK = KK - 1
  293. YT = Y1
  294. Y1 = (B(KK)*Y1-Y2)/A(KK)
  295. Y2 = YT
  296. 200 CONTINUE
  297. C-----------------------------------------------------------------------
  298. C THE CONTIGUOUS RELATION
  299. C X*U(B,C+1,X)=(C-B)*U(B,C,X)+U(B-1,C,X)
  300. C WITH B=A+1 , C=A IS USED FOR
  301. C Y(2) = C * U(A+1,A+1,X)
  302. C X IS INCORPORATED INTO THE NORMALIZING RELATION
  303. C-----------------------------------------------------------------------
  304. PT = Y2/Y1
  305. CNORM = 1.0E0 - PT*(AH+1.0E0)/AA
  306. Y(1) = 1.0E0/(CNORM*AA+X)
  307. Y(2) = CNORM*Y(1)
  308. IF (ICASE.EQ.3) GO TO 210
  309. EN(IND) = EMX*Y(JSET)
  310. IF (M.EQ.1) RETURN
  311. AA = KS
  312. GO TO (220, 240), ICASE
  313. C-----------------------------------------------------------------------
  314. C RECURSION SECTION N*E(N+1,X) + X*E(N,X)=EMX
  315. C-----------------------------------------------------------------------
  316. 210 EN(1) = EMX*(1.0E0-Y(1))/X
  317. RETURN
  318. 220 K = IND - 1
  319. DO 230 I=1,ML
  320. AA = AA - 1.0D0
  321. EN(K) = (EMX-AA*EN(K+1))/X
  322. K = K - 1
  323. 230 CONTINUE
  324. IF (MU.LE.0) RETURN
  325. AA = KS
  326. 240 K = IND
  327. DO 250 I=1,MU
  328. EN(K+1) = (EMX-X*EN(K))/AA
  329. AA = AA + 1.0D0
  330. K = K + 1
  331. 250 CONTINUE
  332. RETURN
  333. 340 CONTINUE
  334. IERR = 2
  335. RETURN
  336. END