123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107 |
- *DECK DFEHL
- SUBROUTINE DFEHL (DF, NEQ, T, Y, H, YP, F1, F2, F3, F4, F5, YS,
- + RPAR, IPAR)
- C***BEGIN PROLOGUE DFEHL
- C***SUBSIDIARY
- C***PURPOSE Subsidiary to DDERKF
- C***LIBRARY SLATEC
- C***TYPE DOUBLE PRECISION (DEFEHL-S, DFEHL-D)
- C***AUTHOR Watts, H. A., (SNLA)
- C***DESCRIPTION
- C
- C Fehlberg Fourth-Fifth Order Runge-Kutta Method
- C **********************************************************************
- C
- C DFEHL integrates a system of NEQ first order
- C ordinary differential equations of the form
- C DU/DX = DF(X,U)
- C over one step when the vector Y(*) of initial values for U(*) and
- C the vector YP(*) of initial derivatives, satisfying YP = DF(T,Y),
- C are given at the starting point X=T.
- C
- C DFEHL advances the solution over the fixed step H and returns
- C the fifth order (sixth order accurate locally) solution
- C approximation at T+H in the array YS(*).
- C F1,---,F5 are arrays of dimension NEQ which are needed
- C for internal storage.
- C The formulas have been grouped to control loss of significance.
- C DFEHL should be called with an H not smaller than 13 units of
- C roundoff in T so that the various independent arguments can be
- C distinguished.
- C
- C This subroutine has been written with all variables and statement
- C numbers entirely compatible with DRKFS. For greater efficiency,
- C the call to DFEHL can be replaced by the module beginning with
- C line 222 and extending to the last line just before the return
- C statement.
- C
- C **********************************************************************
- C
- C***SEE ALSO DDERKF
- C***ROUTINES CALLED (NONE)
- C***REVISION HISTORY (YYMMDD)
- C 820301 DATE WRITTEN
- C 890831 Modified array declarations. (WRB)
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 900328 Added TYPE section. (WRB)
- C 910722 Updated AUTHOR section. (ALS)
- C***END PROLOGUE DFEHL
- C
- INTEGER IPAR, K, NEQ
- DOUBLE PRECISION CH, F1, F2, F3, F4, F5, H, RPAR, T, Y, YP, YS
- DIMENSION Y(*),YP(*),F1(*),F2(*),F3(*),F4(*),F5(*),
- 1 YS(*),RPAR(*),IPAR(*)
- C
- C***FIRST EXECUTABLE STATEMENT DFEHL
- CH = H/4.0D0
- DO 10 K = 1, NEQ
- YS(K) = Y(K) + CH*YP(K)
- 10 CONTINUE
- CALL DF(T+CH,YS,F1,RPAR,IPAR)
- C
- CH = 3.0D0*H/32.0D0
- DO 20 K = 1, NEQ
- YS(K) = Y(K) + CH*(YP(K) + 3.0D0*F1(K))
- 20 CONTINUE
- CALL DF(T+3.0D0*H/8.0D0,YS,F2,RPAR,IPAR)
- C
- CH = H/2197.0D0
- DO 30 K = 1, NEQ
- YS(K) = Y(K)
- 1 + CH
- 2 *(1932.0D0*YP(K) + (7296.0D0*F2(K) - 7200.0D0*F1(K)))
- 30 CONTINUE
- CALL DF(T+12.0D0*H/13.0D0,YS,F3,RPAR,IPAR)
- C
- CH = H/4104.0D0
- DO 40 K = 1, NEQ
- YS(K) = Y(K)
- 1 + CH
- 2 *((8341.0D0*YP(K) - 845.0D0*F3(K))
- 3 + (29440.0D0*F2(K) - 32832.0D0*F1(K)))
- 40 CONTINUE
- CALL DF(T+H,YS,F4,RPAR,IPAR)
- C
- CH = H/20520.0D0
- DO 50 K = 1, NEQ
- YS(K) = Y(K)
- 1 + CH
- 2 *((-6080.0D0*YP(K)
- 3 + (9295.0D0*F3(K) - 5643.0D0*F4(K)))
- 4 + (41040.0D0*F1(K) - 28352.0D0*F2(K)))
- 50 CONTINUE
- CALL DF(T+H/2.0D0,YS,F5,RPAR,IPAR)
- C
- C COMPUTE APPROXIMATE SOLUTION AT T+H
- C
- CH = H/7618050.0D0
- DO 60 K = 1, NEQ
- YS(K) = Y(K)
- 1 + CH
- 2 *((902880.0D0*YP(K)
- 3 + (3855735.0D0*F3(K) - 1371249.0D0*F4(K)))
- 4 + (3953664.0D0*F2(K) + 277020.0D0*F5(K)))
- 60 CONTINUE
- C
- RETURN
- END
|