123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129 |
- *DECK DGAMIC
- DOUBLE PRECISION FUNCTION DGAMIC (A, X)
- C***BEGIN PROLOGUE DGAMIC
- C***PURPOSE Calculate the complementary incomplete Gamma function.
- C***LIBRARY SLATEC (FNLIB)
- C***CATEGORY C7E
- C***TYPE DOUBLE PRECISION (GAMIC-S, DGAMIC-D)
- C***KEYWORDS COMPLEMENTARY INCOMPLETE GAMMA FUNCTION, FNLIB,
- C SPECIAL FUNCTIONS
- C***AUTHOR Fullerton, W., (LANL)
- C***DESCRIPTION
- C
- C Evaluate the complementary incomplete Gamma function
- C
- C DGAMIC = integral from X to infinity of EXP(-T) * T**(A-1.) .
- C
- C DGAMIC is evaluated for arbitrary real values of A and for non-
- C negative values of X (even though DGAMIC is defined for X .LT.
- C 0.0), except that for X = 0 and A .LE. 0.0, DGAMIC is undefined.
- C
- C DGAMIC, A, and X are DOUBLE PRECISION.
- C
- C A slight deterioration of 2 or 3 digits accuracy will occur when
- C DGAMIC is very large or very small in absolute value, because log-
- C arithmic variables are used. Also, if the parameter A is very close
- C to a negative INTEGER (but not a negative integer), there is a loss
- C of accuracy, which is reported if the result is less than half
- C machine precision.
- C
- C***REFERENCES W. Gautschi, A computational procedure for incomplete
- C gamma functions, ACM Transactions on Mathematical
- C Software 5, 4 (December 1979), pp. 466-481.
- C W. Gautschi, Incomplete gamma functions, Algorithm 542,
- C ACM Transactions on Mathematical Software 5, 4
- C (December 1979), pp. 482-489.
- C***ROUTINES CALLED D1MACH, D9GMIC, D9GMIT, D9LGIC, D9LGIT, DLGAMS,
- C DLNGAM, XERCLR, XERMSG
- C***REVISION HISTORY (YYMMDD)
- C 770701 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890531 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
- C 920528 DESCRIPTION and REFERENCES sections revised. (WRB)
- C***END PROLOGUE DGAMIC
- DOUBLE PRECISION A, X, AEPS, AINTA, ALGAP1, ALNEPS, ALNGS, ALX,
- 1 BOT, E, EPS, GSTAR, H, SGA, SGNG, SGNGAM, SGNGS, SQEPS, T,
- 2 D1MACH, DLNGAM, D9GMIC, D9GMIT, D9LGIC, D9LGIT
- LOGICAL FIRST
- SAVE EPS, SQEPS, ALNEPS, BOT, FIRST
- DATA FIRST /.TRUE./
- C***FIRST EXECUTABLE STATEMENT DGAMIC
- IF (FIRST) THEN
- EPS = 0.5D0*D1MACH(3)
- SQEPS = SQRT(D1MACH(4))
- ALNEPS = -LOG (D1MACH(3))
- BOT = LOG (D1MACH(1))
- ENDIF
- FIRST = .FALSE.
- C
- IF (X .LT. 0.D0) CALL XERMSG ('SLATEC', 'DGAMIC', 'X IS NEGATIVE'
- + , 2, 2)
- C
- IF (X.GT.0.D0) GO TO 20
- IF (A .LE. 0.D0) CALL XERMSG ('SLATEC', 'DGAMIC',
- + 'X = 0 AND A LE 0 SO DGAMIC IS UNDEFINED', 3, 2)
- C
- DGAMIC = EXP (DLNGAM(A+1.D0) - LOG(A))
- RETURN
- C
- 20 ALX = LOG (X)
- SGA = 1.0D0
- IF (A.NE.0.D0) SGA = SIGN (1.0D0, A)
- AINTA = AINT (A + 0.5D0*SGA)
- AEPS = A - AINTA
- C
- IZERO = 0
- IF (X.GE.1.0D0) GO TO 40
- C
- IF (A.GT.0.5D0 .OR. ABS(AEPS).GT.0.001D0) GO TO 30
- E = 2.0D0
- IF (-AINTA.GT.1.D0) E = 2.D0*(-AINTA+2.D0)/(AINTA*AINTA-1.0D0)
- E = E - ALX * X**(-0.001D0)
- IF (E*ABS(AEPS).GT.EPS) GO TO 30
- C
- DGAMIC = D9GMIC (A, X, ALX)
- RETURN
- C
- 30 CALL DLGAMS (A+1.0D0, ALGAP1, SGNGAM)
- GSTAR = D9GMIT (A, X, ALGAP1, SGNGAM, ALX)
- IF (GSTAR.EQ.0.D0) IZERO = 1
- IF (GSTAR.NE.0.D0) ALNGS = LOG (ABS(GSTAR))
- IF (GSTAR.NE.0.D0) SGNGS = SIGN (1.0D0, GSTAR)
- GO TO 50
- C
- 40 IF (A.LT.X) DGAMIC = EXP (D9LGIC(A, X, ALX))
- IF (A.LT.X) RETURN
- C
- SGNGAM = 1.0D0
- ALGAP1 = DLNGAM (A+1.0D0)
- SGNGS = 1.0D0
- ALNGS = D9LGIT (A, X, ALGAP1)
- C
- C EVALUATION OF DGAMIC(A,X) IN TERMS OF TRICOMI-S INCOMPLETE GAMMA FN.
- C
- 50 H = 1.D0
- IF (IZERO.EQ.1) GO TO 60
- C
- T = A*ALX + ALNGS
- IF (T.GT.ALNEPS) GO TO 70
- IF (T.GT.(-ALNEPS)) H = 1.0D0 - SGNGS*EXP(T)
- C
- IF (ABS(H).LT.SQEPS) CALL XERCLR
- IF (ABS(H) .LT. SQEPS) CALL XERMSG ('SLATEC', 'DGAMIC',
- + 'RESULT LT HALF PRECISION', 1, 1)
- C
- 60 SGNG = SIGN (1.0D0, H) * SGA * SGNGAM
- T = LOG(ABS(H)) + ALGAP1 - LOG(ABS(A))
- IF (T.LT.BOT) CALL XERCLR
- DGAMIC = SGNG * EXP(T)
- RETURN
- C
- 70 SGNG = -SGNGS * SGA * SGNGAM
- T = T + ALGAP1 - LOG(ABS(A))
- IF (T.LT.BOT) CALL XERCLR
- DGAMIC = SGNG * EXP(T)
- RETURN
- C
- END
|