dgeco.f 6.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207
  1. *DECK DGECO
  2. SUBROUTINE DGECO (A, LDA, N, IPVT, RCOND, Z)
  3. C***BEGIN PROLOGUE DGECO
  4. C***PURPOSE Factor a matrix using Gaussian elimination and estimate
  5. C the condition number of the matrix.
  6. C***LIBRARY SLATEC (LINPACK)
  7. C***CATEGORY D2A1
  8. C***TYPE DOUBLE PRECISION (SGECO-S, DGECO-D, CGECO-C)
  9. C***KEYWORDS CONDITION NUMBER, GENERAL MATRIX, LINEAR ALGEBRA, LINPACK,
  10. C MATRIX FACTORIZATION
  11. C***AUTHOR Moler, C. B., (U. of New Mexico)
  12. C***DESCRIPTION
  13. C
  14. C DGECO factors a double precision matrix by Gaussian elimination
  15. C and estimates the condition of the matrix.
  16. C
  17. C If RCOND is not needed, DGEFA is slightly faster.
  18. C To solve A*X = B , follow DGECO by DGESL.
  19. C To compute INVERSE(A)*C , follow DGECO by DGESL.
  20. C To compute DETERMINANT(A) , follow DGECO by DGEDI.
  21. C To compute INVERSE(A) , follow DGECO by DGEDI.
  22. C
  23. C On Entry
  24. C
  25. C A DOUBLE PRECISION(LDA, N)
  26. C the matrix to be factored.
  27. C
  28. C LDA INTEGER
  29. C the leading dimension of the array A .
  30. C
  31. C N INTEGER
  32. C the order of the matrix A .
  33. C
  34. C On Return
  35. C
  36. C A an upper triangular matrix and the multipliers
  37. C which were used to obtain it.
  38. C The factorization can be written A = L*U where
  39. C L is a product of permutation and unit lower
  40. C triangular matrices and U is upper triangular.
  41. C
  42. C IPVT INTEGER(N)
  43. C an INTEGER vector of pivot indices.
  44. C
  45. C RCOND DOUBLE PRECISION
  46. C an estimate of the reciprocal condition of A .
  47. C For the system A*X = B , relative perturbations
  48. C in A and B of size EPSILON may cause
  49. C relative perturbations in X of size EPSILON/RCOND .
  50. C If RCOND is so small that the logical expression
  51. C 1.0 + RCOND .EQ. 1.0
  52. C is true, then A may be singular to working
  53. C precision. In particular, RCOND is zero if
  54. C exact singularity is detected or the estimate
  55. C underflows.
  56. C
  57. C Z DOUBLE PRECISION(N)
  58. C a work vector whose contents are usually unimportant.
  59. C If A is close to a singular matrix, then Z is
  60. C an approximate null vector in the sense that
  61. C NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .
  62. C
  63. C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
  64. C Stewart, LINPACK Users' Guide, SIAM, 1979.
  65. C***ROUTINES CALLED DASUM, DAXPY, DDOT, DGEFA, DSCAL
  66. C***REVISION HISTORY (YYMMDD)
  67. C 780814 DATE WRITTEN
  68. C 890531 Changed all specific intrinsics to generic. (WRB)
  69. C 890831 Modified array declarations. (WRB)
  70. C 890831 REVISION DATE from Version 3.2
  71. C 891214 Prologue converted to Version 4.0 format. (BAB)
  72. C 900326 Removed duplicate information from DESCRIPTION section.
  73. C (WRB)
  74. C 920501 Reformatted the REFERENCES section. (WRB)
  75. C***END PROLOGUE DGECO
  76. INTEGER LDA,N,IPVT(*)
  77. DOUBLE PRECISION A(LDA,*),Z(*)
  78. DOUBLE PRECISION RCOND
  79. C
  80. DOUBLE PRECISION DDOT,EK,T,WK,WKM
  81. DOUBLE PRECISION ANORM,S,DASUM,SM,YNORM
  82. INTEGER INFO,J,K,KB,KP1,L
  83. C
  84. C COMPUTE 1-NORM OF A
  85. C
  86. C***FIRST EXECUTABLE STATEMENT DGECO
  87. ANORM = 0.0D0
  88. DO 10 J = 1, N
  89. ANORM = MAX(ANORM,DASUM(N,A(1,J),1))
  90. 10 CONTINUE
  91. C
  92. C FACTOR
  93. C
  94. CALL DGEFA(A,LDA,N,IPVT,INFO)
  95. C
  96. C RCOND = 1/(NORM(A)*(ESTIMATE OF NORM(INVERSE(A)))) .
  97. C ESTIMATE = NORM(Z)/NORM(Y) WHERE A*Z = Y AND TRANS(A)*Y = E .
  98. C TRANS(A) IS THE TRANSPOSE OF A . THE COMPONENTS OF E ARE
  99. C CHOSEN TO CAUSE MAXIMUM LOCAL GROWTH IN THE ELEMENTS OF W WHERE
  100. C TRANS(U)*W = E . THE VECTORS ARE FREQUENTLY RESCALED TO AVOID
  101. C OVERFLOW.
  102. C
  103. C SOLVE TRANS(U)*W = E
  104. C
  105. EK = 1.0D0
  106. DO 20 J = 1, N
  107. Z(J) = 0.0D0
  108. 20 CONTINUE
  109. DO 100 K = 1, N
  110. IF (Z(K) .NE. 0.0D0) EK = SIGN(EK,-Z(K))
  111. IF (ABS(EK-Z(K)) .LE. ABS(A(K,K))) GO TO 30
  112. S = ABS(A(K,K))/ABS(EK-Z(K))
  113. CALL DSCAL(N,S,Z,1)
  114. EK = S*EK
  115. 30 CONTINUE
  116. WK = EK - Z(K)
  117. WKM = -EK - Z(K)
  118. S = ABS(WK)
  119. SM = ABS(WKM)
  120. IF (A(K,K) .EQ. 0.0D0) GO TO 40
  121. WK = WK/A(K,K)
  122. WKM = WKM/A(K,K)
  123. GO TO 50
  124. 40 CONTINUE
  125. WK = 1.0D0
  126. WKM = 1.0D0
  127. 50 CONTINUE
  128. KP1 = K + 1
  129. IF (KP1 .GT. N) GO TO 90
  130. DO 60 J = KP1, N
  131. SM = SM + ABS(Z(J)+WKM*A(K,J))
  132. Z(J) = Z(J) + WK*A(K,J)
  133. S = S + ABS(Z(J))
  134. 60 CONTINUE
  135. IF (S .GE. SM) GO TO 80
  136. T = WKM - WK
  137. WK = WKM
  138. DO 70 J = KP1, N
  139. Z(J) = Z(J) + T*A(K,J)
  140. 70 CONTINUE
  141. 80 CONTINUE
  142. 90 CONTINUE
  143. Z(K) = WK
  144. 100 CONTINUE
  145. S = 1.0D0/DASUM(N,Z,1)
  146. CALL DSCAL(N,S,Z,1)
  147. C
  148. C SOLVE TRANS(L)*Y = W
  149. C
  150. DO 120 KB = 1, N
  151. K = N + 1 - KB
  152. IF (K .LT. N) Z(K) = Z(K) + DDOT(N-K,A(K+1,K),1,Z(K+1),1)
  153. IF (ABS(Z(K)) .LE. 1.0D0) GO TO 110
  154. S = 1.0D0/ABS(Z(K))
  155. CALL DSCAL(N,S,Z,1)
  156. 110 CONTINUE
  157. L = IPVT(K)
  158. T = Z(L)
  159. Z(L) = Z(K)
  160. Z(K) = T
  161. 120 CONTINUE
  162. S = 1.0D0/DASUM(N,Z,1)
  163. CALL DSCAL(N,S,Z,1)
  164. C
  165. YNORM = 1.0D0
  166. C
  167. C SOLVE L*V = Y
  168. C
  169. DO 140 K = 1, N
  170. L = IPVT(K)
  171. T = Z(L)
  172. Z(L) = Z(K)
  173. Z(K) = T
  174. IF (K .LT. N) CALL DAXPY(N-K,T,A(K+1,K),1,Z(K+1),1)
  175. IF (ABS(Z(K)) .LE. 1.0D0) GO TO 130
  176. S = 1.0D0/ABS(Z(K))
  177. CALL DSCAL(N,S,Z,1)
  178. YNORM = S*YNORM
  179. 130 CONTINUE
  180. 140 CONTINUE
  181. S = 1.0D0/DASUM(N,Z,1)
  182. CALL DSCAL(N,S,Z,1)
  183. YNORM = S*YNORM
  184. C
  185. C SOLVE U*Z = V
  186. C
  187. DO 160 KB = 1, N
  188. K = N + 1 - KB
  189. IF (ABS(Z(K)) .LE. ABS(A(K,K))) GO TO 150
  190. S = ABS(A(K,K))/ABS(Z(K))
  191. CALL DSCAL(N,S,Z,1)
  192. YNORM = S*YNORM
  193. 150 CONTINUE
  194. IF (A(K,K) .NE. 0.0D0) Z(K) = Z(K)/A(K,K)
  195. IF (A(K,K) .EQ. 0.0D0) Z(K) = 1.0D0
  196. T = -Z(K)
  197. CALL DAXPY(K-1,T,A(1,K),1,Z(1),1)
  198. 160 CONTINUE
  199. C MAKE ZNORM = 1.0
  200. S = 1.0D0/DASUM(N,Z,1)
  201. CALL DSCAL(N,S,Z,1)
  202. YNORM = S*YNORM
  203. C
  204. IF (ANORM .NE. 0.0D0) RCOND = YNORM/ANORM
  205. IF (ANORM .EQ. 0.0D0) RCOND = 0.0D0
  206. RETURN
  207. END