123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165 |
- *DECK DGEFS
- SUBROUTINE DGEFS (A, LDA, N, V, ITASK, IND, WORK, IWORK)
- C***BEGIN PROLOGUE DGEFS
- C***PURPOSE Solve a general system of linear equations.
- C***LIBRARY SLATEC
- C***CATEGORY D2A1
- C***TYPE DOUBLE PRECISION (SGEFS-S, DGEFS-D, CGEFS-C)
- C***KEYWORDS COMPLEX LINEAR EQUATIONS, GENERAL MATRIX,
- C GENERAL SYSTEM OF LINEAR EQUATIONS
- C***AUTHOR Voorhees, E. A., (LANL)
- C***DESCRIPTION
- C
- C Subroutine DGEFS solves a general NxN system of double
- C precision linear equations using LINPACK subroutines DGECO
- C and DGESL. That is, if A is an NxN double precision matrix
- C and if X and B are double precision N-vectors, then DGEFS
- C solves the equation
- C
- C A*X=B.
- C
- C The matrix A is first factored into upper and lower tri-
- C angular matrices U and L using partial pivoting. These
- C factors and the pivoting information are used to find the
- C solution vector X. An approximate condition number is
- C calculated to provide a rough estimate of the number of
- C digits of accuracy in the computed solution.
- C
- C If the equation A*X=B is to be solved for more than one vector
- C B, the factoring of A does not need to be performed again and
- C the option to only solve (ITASK.GT.1) will be faster for
- C the succeeding solutions. In this case, the contents of A,
- C LDA, N and IWORK must not have been altered by the user follow-
- C ing factorization (ITASK=1). IND will not be changed by DGEFS
- C in this case.
- C
- C Argument Description ***
- C
- C A DOUBLE PRECISION(LDA,N)
- C on entry, the doubly subscripted array with dimension
- C (LDA,N) which contains the coefficient matrix.
- C on return, an upper triangular matrix U and the
- C multipliers necessary to construct a matrix L
- C so that A=L*U.
- C LDA INTEGER
- C the leading dimension of the array A. LDA must be great-
- C er than or equal to N. (terminal error message IND=-1)
- C N INTEGER
- C the order of the matrix A. The first N elements of
- C the array A are the elements of the first column of
- C the matrix A. N must be greater than or equal to 1.
- C (terminal error message IND=-2)
- C V DOUBLE PRECISION(N)
- C on entry, the singly subscripted array(vector) of di-
- C mension N which contains the right hand side B of a
- C system of simultaneous linear equations A*X=B.
- C on return, V contains the solution vector, X .
- C ITASK INTEGER
- C If ITASK=1, the matrix A is factored and then the
- C linear equation is solved.
- C If ITASK .GT. 1, the equation is solved using the existing
- C factored matrix A and IWORK.
- C If ITASK .LT. 1, then terminal error message IND=-3 is
- C printed.
- C IND INTEGER
- C GT. 0 IND is a rough estimate of the number of digits
- C of accuracy in the solution, X.
- C LT. 0 see error message corresponding to IND below.
- C WORK DOUBLE PRECISION(N)
- C a singly subscripted array of dimension at least N.
- C IWORK INTEGER(N)
- C a singly subscripted array of dimension at least N.
- C
- C Error Messages Printed ***
- C
- C IND=-1 terminal N is greater than LDA.
- C IND=-2 terminal N is less than 1.
- C IND=-3 terminal ITASK is less than 1.
- C IND=-4 terminal The matrix A is computationally singular.
- C A solution has not been computed.
- C IND=-10 warning The solution has no apparent significance.
- C The solution may be inaccurate or the matrix
- C A may be poorly scaled.
- C
- C Note- The above terminal(*fatal*) error messages are
- C designed to be handled by XERMSG in which
- C LEVEL=1 (recoverable) and IFLAG=2 . LEVEL=0
- C for warning error messages from XERMSG. Unless
- C the user provides otherwise, an error message
- C will be printed followed by an abort.
- C
- C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
- C Stewart, LINPACK Users' Guide, SIAM, 1979.
- C***ROUTINES CALLED D1MACH, DGECO, DGESL, XERMSG
- C***REVISION HISTORY (YYMMDD)
- C 800326 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890831 Modified array declarations. (WRB)
- C 890831 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
- C 900510 Convert XERRWV calls to XERMSG calls. (RWC)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE DGEFS
- C
- INTEGER LDA,N,ITASK,IND,IWORK(*)
- DOUBLE PRECISION A(LDA,*),V(*),WORK(*),D1MACH
- DOUBLE PRECISION RCOND
- CHARACTER*8 XERN1, XERN2
- C***FIRST EXECUTABLE STATEMENT DGEFS
- IF (LDA.LT.N) THEN
- IND = -1
- WRITE (XERN1, '(I8)') LDA
- WRITE (XERN2, '(I8)') N
- CALL XERMSG ('SLATEC', 'DGEFS', 'LDA = ' // XERN1 //
- * ' IS LESS THAN N = ' // XERN2, -1, 1)
- RETURN
- ENDIF
- C
- IF (N.LE.0) THEN
- IND = -2
- WRITE (XERN1, '(I8)') N
- CALL XERMSG ('SLATEC', 'DGEFS', 'N = ' // XERN1 //
- * ' IS LESS THAN 1', -2, 1)
- RETURN
- ENDIF
- C
- IF (ITASK.LT.1) THEN
- IND = -3
- WRITE (XERN1, '(I8)') ITASK
- CALL XERMSG ('SLATEC', 'DGEFS', 'ITASK = ' // XERN1 //
- * ' IS LESS THAN 1', -3, 1)
- RETURN
- ENDIF
- C
- IF (ITASK.EQ.1) THEN
- C
- C FACTOR MATRIX A INTO LU
- C
- CALL DGECO(A,LDA,N,IWORK,RCOND,WORK)
- C
- C CHECK FOR COMPUTATIONALLY SINGULAR MATRIX
- C
- IF (RCOND.EQ.0.0D0) THEN
- IND = -4
- CALL XERMSG ('SLATEC', 'DGEFS',
- * 'SINGULAR MATRIX A - NO SOLUTION', -4, 1)
- RETURN
- ENDIF
- C
- C COMPUTE IND (ESTIMATE OF NO. OF SIGNIFICANT DIGITS)
- C AND CHECK FOR IND GREATER THAN ZERO
- C
- IND = -LOG10(D1MACH(4)/RCOND)
- IF (IND.LE.0) THEN
- IND=-10
- CALL XERMSG ('SLATEC', 'DGEFS',
- * 'SOLUTION MAY HAVE NO SIGNIFICANCE', -10, 0)
- ENDIF
- ENDIF
- C
- C SOLVE AFTER FACTORING
- C
- CALL DGESL(A,LDA,N,IWORK,V,0)
- RETURN
- END
|