123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553 |
- *DECK DGMRES
- SUBROUTINE DGMRES (N, B, X, NELT, IA, JA, A, ISYM, MATVEC, MSOLVE,
- + ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT, SB, SX, RGWK, LRGW,
- + IGWK, LIGW, RWORK, IWORK)
- C***BEGIN PROLOGUE DGMRES
- C***PURPOSE Preconditioned GMRES iterative sparse Ax=b solver.
- C This routine uses the generalized minimum residual
- C (GMRES) method with preconditioning to solve
- C non-symmetric linear systems of the form: Ax = b.
- C***LIBRARY SLATEC (SLAP)
- C***CATEGORY D2A4, D2B4
- C***TYPE DOUBLE PRECISION (SGMRES-S, DGMRES-D)
- C***KEYWORDS GENERALIZED MINIMUM RESIDUAL, ITERATIVE PRECONDITION,
- C NON-SYMMETRIC LINEAR SYSTEM, SLAP, SPARSE
- C***AUTHOR Brown, Peter, (LLNL), pnbrown@llnl.gov
- C Hindmarsh, Alan, (LLNL), alanh@llnl.gov
- C Seager, Mark K., (LLNL), seager@llnl.gov
- C Lawrence Livermore National Laboratory
- C PO Box 808, L-60
- C Livermore, CA 94550 (510) 423-3141
- C***DESCRIPTION
- C
- C *Usage:
- C INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX
- C INTEGER ITER, IERR, IUNIT, LRGW, IGWK(LIGW), LIGW
- C INTEGER IWORK(USER DEFINED)
- C DOUBLE PRECISION B(N), X(N), A(NELT), TOL, ERR, SB(N), SX(N)
- C DOUBLE PRECISION RGWK(LRGW), RWORK(USER DEFINED)
- C EXTERNAL MATVEC, MSOLVE
- C
- C CALL DGMRES(N, B, X, NELT, IA, JA, A, ISYM, MATVEC, MSOLVE,
- C $ ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT, SB, SX,
- C $ RGWK, LRGW, IGWK, LIGW, RWORK, IWORK)
- C
- C *Arguments:
- C N :IN Integer.
- C Order of the Matrix.
- C B :IN Double Precision B(N).
- C Right-hand side vector.
- C X :INOUT Double Precision X(N).
- C On input X is your initial guess for the solution vector.
- C On output X is the final approximate solution.
- C NELT :IN Integer.
- C Number of Non-Zeros stored in A.
- C IA :IN Integer IA(NELT).
- C JA :IN Integer JA(NELT).
- C A :IN Double Precision A(NELT).
- C These arrays contain the matrix data structure for A.
- C It could take any form. See "Description", below,
- C for more details.
- C ISYM :IN Integer.
- C Flag to indicate symmetric storage format.
- C If ISYM=0, all non-zero entries of the matrix are stored.
- C If ISYM=1, the matrix is symmetric, and only the upper
- C or lower triangle of the matrix is stored.
- C MATVEC :EXT External.
- C Name of a routine which performs the matrix vector multiply
- C Y = A*X given A and X. The name of the MATVEC routine must
- C be declared external in the calling program. The calling
- C sequence to MATVEC is:
- C CALL MATVEC(N, X, Y, NELT, IA, JA, A, ISYM)
- C where N is the number of unknowns, Y is the product A*X
- C upon return, X is an input vector, and NELT is the number of
- C non-zeros in the SLAP IA, JA, A storage for the matrix A.
- C ISYM is a flag which, if non-zero, denotes that A is
- C symmetric and only the lower or upper triangle is stored.
- C MSOLVE :EXT External.
- C Name of the routine which solves a linear system Mz = r for
- C z given r with the preconditioning matrix M (M is supplied via
- C RWORK and IWORK arrays. The name of the MSOLVE routine must
- C be declared external in the calling program. The calling
- C sequence to MSOLVE is:
- C CALL MSOLVE(N, R, Z, NELT, IA, JA, A, ISYM, RWORK, IWORK)
- C Where N is the number of unknowns, R is the right-hand side
- C vector and Z is the solution upon return. NELT, IA, JA, A and
- C ISYM are defined as above. RWORK is a double precision array
- C that can be used to pass necessary preconditioning information
- C and/or workspace to MSOLVE. IWORK is an integer work array
- C for the same purpose as RWORK.
- C ITOL :IN Integer.
- C Flag to indicate the type of convergence criterion used.
- C ITOL=0 Means the iteration stops when the test described
- C below on the residual RL is satisfied. This is
- C the "Natural Stopping Criteria" for this routine.
- C Other values of ITOL cause extra, otherwise
- C unnecessary, computation per iteration and are
- C therefore much less efficient. See ISDGMR (the
- C stop test routine) for more information.
- C ITOL=1 Means the iteration stops when the first test
- C described below on the residual RL is satisfied,
- C and there is either right or no preconditioning
- C being used.
- C ITOL=2 Implies that the user is using left
- C preconditioning, and the second stopping criterion
- C below is used.
- C ITOL=3 Means the iteration stops when the third test
- C described below on Minv*Residual is satisfied, and
- C there is either left or no preconditioning being
- C used.
- C ITOL=11 is often useful for checking and comparing
- C different routines. For this case, the user must
- C supply the "exact" solution or a very accurate
- C approximation (one with an error much less than
- C TOL) through a common block,
- C COMMON /DSLBLK/ SOLN( )
- C If ITOL=11, iteration stops when the 2-norm of the
- C difference between the iterative approximation and
- C the user-supplied solution divided by the 2-norm
- C of the user-supplied solution is less than TOL.
- C Note that this requires the user to set up the
- C "COMMON /DSLBLK/ SOLN(LENGTH)" in the calling
- C routine. The routine with this declaration should
- C be loaded before the stop test so that the correct
- C length is used by the loader. This procedure is
- C not standard Fortran and may not work correctly on
- C your system (although it has worked on every
- C system the authors have tried). If ITOL is not 11
- C then this common block is indeed standard Fortran.
- C TOL :INOUT Double Precision.
- C Convergence criterion, as described below. If TOL is set
- C to zero on input, then a default value of 500*(the smallest
- C positive magnitude, machine epsilon) is used.
- C ITMAX :DUMMY Integer.
- C Maximum number of iterations in most SLAP routines. In
- C this routine this does not make sense. The maximum number
- C of iterations here is given by ITMAX = MAXL*(NRMAX+1).
- C See IGWK for definitions of MAXL and NRMAX.
- C ITER :OUT Integer.
- C Number of iterations required to reach convergence, or
- C ITMAX if convergence criterion could not be achieved in
- C ITMAX iterations.
- C ERR :OUT Double Precision.
- C Error estimate of error in final approximate solution, as
- C defined by ITOL. Letting norm() denote the Euclidean
- C norm, ERR is defined as follows..
- C
- C If ITOL=0, then ERR = norm(SB*(B-A*X(L)))/norm(SB*B),
- C for right or no preconditioning, and
- C ERR = norm(SB*(M-inverse)*(B-A*X(L)))/
- C norm(SB*(M-inverse)*B),
- C for left preconditioning.
- C If ITOL=1, then ERR = norm(SB*(B-A*X(L)))/norm(SB*B),
- C since right or no preconditioning
- C being used.
- C If ITOL=2, then ERR = norm(SB*(M-inverse)*(B-A*X(L)))/
- C norm(SB*(M-inverse)*B),
- C since left preconditioning is being
- C used.
- C If ITOL=3, then ERR = Max |(Minv*(B-A*X(L)))(i)/x(i)|
- C i=1,n
- C If ITOL=11, then ERR = norm(SB*(X(L)-SOLN))/norm(SB*SOLN).
- C IERR :OUT Integer.
- C Return error flag.
- C IERR = 0 => All went well.
- C IERR = 1 => Insufficient storage allocated for
- C RGWK or IGWK.
- C IERR = 2 => Routine DGMRES failed to reduce the norm
- C of the current residual on its last call,
- C and so the iteration has stalled. In
- C this case, X equals the last computed
- C approximation. The user must either
- C increase MAXL, or choose a different
- C initial guess.
- C IERR =-1 => Insufficient length for RGWK array.
- C IGWK(6) contains the required minimum
- C length of the RGWK array.
- C IERR =-2 => Illegal value of ITOL, or ITOL and JPRE
- C values are inconsistent.
- C For IERR <= 2, RGWK(1) = RHOL, which is the norm on the
- C left-hand-side of the relevant stopping test defined
- C below associated with the residual for the current
- C approximation X(L).
- C IUNIT :IN Integer.
- C Unit number on which to write the error at each iteration,
- C if this is desired for monitoring convergence. If unit
- C number is 0, no writing will occur.
- C SB :IN Double Precision SB(N).
- C Array of length N containing scale factors for the right
- C hand side vector B. If JSCAL.eq.0 (see below), SB need
- C not be supplied.
- C SX :IN Double Precision SX(N).
- C Array of length N containing scale factors for the solution
- C vector X. If JSCAL.eq.0 (see below), SX need not be
- C supplied. SB and SX can be the same array in the calling
- C program if desired.
- C RGWK :INOUT Double Precision RGWK(LRGW).
- C Double Precision array used for workspace by DGMRES.
- C On return, RGWK(1) = RHOL. See IERR for definition of RHOL.
- C LRGW :IN Integer.
- C Length of the double precision workspace, RGWK.
- C LRGW >= 1 + N*(MAXL+6) + MAXL*(MAXL+3).
- C See below for definition of MAXL.
- C For the default values, RGWK has size at least 131 + 16*N.
- C IGWK :INOUT Integer IGWK(LIGW).
- C The following IGWK parameters should be set by the user
- C before calling this routine.
- C IGWK(1) = MAXL. Maximum dimension of Krylov subspace in
- C which X - X0 is to be found (where, X0 is the initial
- C guess). The default value of MAXL is 10.
- C IGWK(2) = KMP. Maximum number of previous Krylov basis
- C vectors to which each new basis vector is made orthogonal.
- C The default value of KMP is MAXL.
- C IGWK(3) = JSCAL. Flag indicating whether the scaling
- C arrays SB and SX are to be used.
- C JSCAL = 0 => SB and SX are not used and the algorithm
- C will perform as if all SB(I) = 1 and SX(I) = 1.
- C JSCAL = 1 => Only SX is used, and the algorithm
- C performs as if all SB(I) = 1.
- C JSCAL = 2 => Only SB is used, and the algorithm
- C performs as if all SX(I) = 1.
- C JSCAL = 3 => Both SB and SX are used.
- C IGWK(4) = JPRE. Flag indicating whether preconditioning
- C is being used.
- C JPRE = 0 => There is no preconditioning.
- C JPRE > 0 => There is preconditioning on the right
- C only, and the solver will call routine MSOLVE.
- C JPRE < 0 => There is preconditioning on the left
- C only, and the solver will call routine MSOLVE.
- C IGWK(5) = NRMAX. Maximum number of restarts of the
- C Krylov iteration. The default value of NRMAX = 10.
- C if IWORK(5) = -1, then no restarts are performed (in
- C this case, NRMAX is set to zero internally).
- C The following IWORK parameters are diagnostic information
- C made available to the user after this routine completes.
- C IGWK(6) = MLWK. Required minimum length of RGWK array.
- C IGWK(7) = NMS. The total number of calls to MSOLVE.
- C LIGW :IN Integer.
- C Length of the integer workspace, IGWK. LIGW >= 20.
- C RWORK :WORK Double Precision RWORK(USER DEFINED).
- C Double Precision array that can be used for workspace in
- C MSOLVE.
- C IWORK :WORK Integer IWORK(USER DEFINED).
- C Integer array that can be used for workspace in MSOLVE.
- C
- C *Description:
- C DGMRES solves a linear system A*X = B rewritten in the form:
- C
- C (SB*A*(M-inverse)*(SX-inverse))*(SX*M*X) = SB*B,
- C
- C with right preconditioning, or
- C
- C (SB*(M-inverse)*A*(SX-inverse))*(SX*X) = SB*(M-inverse)*B,
- C
- C with left preconditioning, where A is an N-by-N double precision
- C matrix, X and B are N-vectors, SB and SX are diagonal scaling
- C matrices, and M is a preconditioning matrix. It uses
- C preconditioned Krylov subpace methods based on the
- C generalized minimum residual method (GMRES). This routine
- C optionally performs either the full orthogonalization
- C version of the GMRES algorithm or an incomplete variant of
- C it. Both versions use restarting of the linear iteration by
- C default, although the user can disable this feature.
- C
- C The GMRES algorithm generates a sequence of approximations
- C X(L) to the true solution of the above linear system. The
- C convergence criteria for stopping the iteration is based on
- C the size of the scaled norm of the residual R(L) = B -
- C A*X(L). The actual stopping test is either:
- C
- C norm(SB*(B-A*X(L))) .le. TOL*norm(SB*B),
- C
- C for right preconditioning, or
- C
- C norm(SB*(M-inverse)*(B-A*X(L))) .le.
- C TOL*norm(SB*(M-inverse)*B),
- C
- C for left preconditioning, where norm() denotes the Euclidean
- C norm, and TOL is a positive scalar less than one input by
- C the user. If TOL equals zero when DGMRES is called, then a
- C default value of 500*(the smallest positive magnitude,
- C machine epsilon) is used. If the scaling arrays SB and SX
- C are used, then ideally they should be chosen so that the
- C vectors SX*X(or SX*M*X) and SB*B have all their components
- C approximately equal to one in magnitude. If one wants to
- C use the same scaling in X and B, then SB and SX can be the
- C same array in the calling program.
- C
- C The following is a list of the other routines and their
- C functions used by DGMRES:
- C DPIGMR Contains the main iteration loop for GMRES.
- C DORTH Orthogonalizes a new vector against older basis vectors.
- C DHEQR Computes a QR decomposition of a Hessenberg matrix.
- C DHELS Solves a Hessenberg least-squares system, using QR
- C factors.
- C DRLCAL Computes the scaled residual RL.
- C DXLCAL Computes the solution XL.
- C ISDGMR User-replaceable stopping routine.
- C
- C This routine does not care what matrix data structure is
- C used for A and M. It simply calls the MATVEC and MSOLVE
- C routines, with the arguments as described above. The user
- C could write any type of structure and the appropriate MATVEC
- C and MSOLVE routines. It is assumed that A is stored in the
- C IA, JA, A arrays in some fashion and that M (or INV(M)) is
- C stored in IWORK and RWORK in some fashion. The SLAP
- C routines DSDCG and DSICCG are examples of this procedure.
- C
- C Two examples of matrix data structures are the: 1) SLAP
- C Triad format and 2) SLAP Column format.
- C
- C =================== S L A P Triad format ===================
- C This routine requires that the matrix A be stored in the
- C SLAP Triad format. In this format only the non-zeros are
- C stored. They may appear in *ANY* order. The user supplies
- C three arrays of length NELT, where NELT is the number of
- C non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)). For
- C each non-zero the user puts the row and column index of that
- C matrix element in the IA and JA arrays. The value of the
- C non-zero matrix element is placed in the corresponding
- C location of the A array. This is an extremely easy data
- C structure to generate. On the other hand it is not too
- C efficient on vector computers for the iterative solution of
- C linear systems. Hence, SLAP changes this input data
- C structure to the SLAP Column format for the iteration (but
- C does not change it back).
- C
- C Here is an example of the SLAP Triad storage format for a
- C 5x5 Matrix. Recall that the entries may appear in any order.
- C
- C 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
- C 1 2 3 4 5 6 7 8 9 10 11
- C |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
- C |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
- C | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
- C | 0 0 0 44 0|
- C |51 0 53 0 55|
- C
- C =================== S L A P Column format ==================
- C
- C This routine requires that the matrix A be stored in the
- C SLAP Column format. In this format the non-zeros are stored
- C counting down columns (except for the diagonal entry, which
- C must appear first in each "column") and are stored in the
- C double precision array A. In other words, for each column
- C in the matrix put the diagonal entry in A. Then put in the
- C other non-zero elements going down the column (except the
- C diagonal) in order. The IA array holds the row index for
- C each non-zero. The JA array holds the offsets into the IA,
- C A arrays for the beginning of each column. That is,
- C IA(JA(ICOL)), A(JA(ICOL)) points to the beginning of the
- C ICOL-th column in IA and A. IA(JA(ICOL+1)-1),
- C A(JA(ICOL+1)-1) points to the end of the ICOL-th column.
- C Note that we always have JA(N+1) = NELT+1, where N is the
- C number of columns in the matrix and NELT is the number of
- C non-zeros in the matrix.
- C
- C Here is an example of the SLAP Column storage format for a
- C 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
- C column):
- C
- C 5x5 Matrix SLAP Column format for 5x5 matrix on left.
- C 1 2 3 4 5 6 7 8 9 10 11
- C |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
- C |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
- C | 0 0 33 0 35| JA: 1 4 6 8 9 12
- C | 0 0 0 44 0|
- C |51 0 53 0 55|
- C
- C *Cautions:
- C This routine will attempt to write to the Fortran logical output
- C unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
- C this logical unit is attached to a file or terminal before calling
- C this routine with a non-zero value for IUNIT. This routine does
- C not check for the validity of a non-zero IUNIT unit number.
- C
- C***REFERENCES 1. Peter N. Brown and A. C. Hindmarsh, Reduced Storage
- C Matrix Methods in Stiff ODE Systems, Lawrence Liver-
- C more National Laboratory Report UCRL-95088, Rev. 1,
- C Livermore, California, June 1987.
- C 2. Mark K. Seager, A SLAP for the Masses, in
- C G. F. Carey, Ed., Parallel Supercomputing: Methods,
- C Algorithms and Applications, Wiley, 1989, pp.135-155.
- C***ROUTINES CALLED D1MACH, DCOPY, DNRM2, DPIGMR
- C***REVISION HISTORY (YYMMDD)
- C 890404 DATE WRITTEN
- C 890404 Previous REVISION DATE
- C 890915 Made changes requested at July 1989 CML Meeting. (MKS)
- C 890922 Numerous changes to prologue to make closer to SLATEC
- C standard. (FNF)
- C 890929 Numerous changes to reduce SP/DP differences. (FNF)
- C 891004 Added new reference.
- C 910411 Prologue converted to Version 4.0 format. (BAB)
- C 910506 Corrected errors in C***ROUTINES CALLED list. (FNF)
- C 920407 COMMON BLOCK renamed DSLBLK. (WRB)
- C 920511 Added complete declaration section. (WRB)
- C 920929 Corrected format of references. (FNF)
- C 921019 Changed 500.0 to 500 to reduce SP/DP differences. (FNF)
- C 921026 Added check for valid value of ITOL. (FNF)
- C***END PROLOGUE DGMRES
- C The following is for optimized compilation on LLNL/LTSS Crays.
- CLLL. OPTIMIZE
- C .. Scalar Arguments ..
- DOUBLE PRECISION ERR, TOL
- INTEGER IERR, ISYM, ITER, ITMAX, ITOL, IUNIT, LIGW, LRGW, N, NELT
- C .. Array Arguments ..
- DOUBLE PRECISION A(NELT), B(N), RGWK(LRGW), RWORK(*), SB(N),
- + SX(N), X(N)
- INTEGER IA(NELT), IGWK(LIGW), IWORK(*), JA(NELT)
- C .. Subroutine Arguments ..
- EXTERNAL MATVEC, MSOLVE
- C .. Local Scalars ..
- DOUBLE PRECISION BNRM, RHOL, SUM
- INTEGER I, IFLAG, JPRE, JSCAL, KMP, LDL, LGMR, LHES, LQ, LR, LV,
- + LW, LXL, LZ, LZM1, MAXL, MAXLP1, NMS, NMSL, NRMAX, NRSTS
- C .. External Functions ..
- DOUBLE PRECISION D1MACH, DNRM2
- EXTERNAL D1MACH, DNRM2
- C .. External Subroutines ..
- EXTERNAL DCOPY, DPIGMR
- C .. Intrinsic Functions ..
- INTRINSIC SQRT
- C***FIRST EXECUTABLE STATEMENT DGMRES
- IERR = 0
- C ------------------------------------------------------------------
- C Load method parameters with user values or defaults.
- C ------------------------------------------------------------------
- MAXL = IGWK(1)
- IF (MAXL .EQ. 0) MAXL = 10
- IF (MAXL .GT. N) MAXL = N
- KMP = IGWK(2)
- IF (KMP .EQ. 0) KMP = MAXL
- IF (KMP .GT. MAXL) KMP = MAXL
- JSCAL = IGWK(3)
- JPRE = IGWK(4)
- C Check for valid value of ITOL.
- IF( (ITOL.LT.0) .OR. ((ITOL.GT.3).AND.(ITOL.NE.11)) ) GOTO 650
- C Check for consistent values of ITOL and JPRE.
- IF( ITOL.EQ.1 .AND. JPRE.LT.0 ) GOTO 650
- IF( ITOL.EQ.2 .AND. JPRE.GE.0 ) GOTO 650
- NRMAX = IGWK(5)
- IF( NRMAX.EQ.0 ) NRMAX = 10
- C If NRMAX .eq. -1, then set NRMAX = 0 to turn off restarting.
- IF( NRMAX.EQ.-1 ) NRMAX = 0
- C If input value of TOL is zero, set it to its default value.
- IF( TOL.EQ.0.0D0 ) TOL = 500*D1MACH(3)
- C
- C Initialize counters.
- ITER = 0
- NMS = 0
- NRSTS = 0
- C ------------------------------------------------------------------
- C Form work array segment pointers.
- C ------------------------------------------------------------------
- MAXLP1 = MAXL + 1
- LV = 1
- LR = LV + N*MAXLP1
- LHES = LR + N + 1
- LQ = LHES + MAXL*MAXLP1
- LDL = LQ + 2*MAXL
- LW = LDL + N
- LXL = LW + N
- LZ = LXL + N
- C
- C Load IGWK(6) with required minimum length of the RGWK array.
- IGWK(6) = LZ + N - 1
- IF( LZ+N-1.GT.LRGW ) GOTO 640
- C ------------------------------------------------------------------
- C Calculate scaled-preconditioned norm of RHS vector b.
- C ------------------------------------------------------------------
- IF (JPRE .LT. 0) THEN
- CALL MSOLVE(N, B, RGWK(LR), NELT, IA, JA, A, ISYM,
- $ RWORK, IWORK)
- NMS = NMS + 1
- ELSE
- CALL DCOPY(N, B, 1, RGWK(LR), 1)
- ENDIF
- IF( JSCAL.EQ.2 .OR. JSCAL.EQ.3 ) THEN
- SUM = 0
- DO 10 I = 1,N
- SUM = SUM + (RGWK(LR-1+I)*SB(I))**2
- 10 CONTINUE
- BNRM = SQRT(SUM)
- ELSE
- BNRM = DNRM2(N,RGWK(LR),1)
- ENDIF
- C ------------------------------------------------------------------
- C Calculate initial residual.
- C ------------------------------------------------------------------
- CALL MATVEC(N, X, RGWK(LR), NELT, IA, JA, A, ISYM)
- DO 50 I = 1,N
- RGWK(LR-1+I) = B(I) - RGWK(LR-1+I)
- 50 CONTINUE
- C ------------------------------------------------------------------
- C If performing restarting, then load the residual into the
- C correct location in the RGWK array.
- C ------------------------------------------------------------------
- 100 CONTINUE
- IF( NRSTS.GT.NRMAX ) GOTO 610
- IF( NRSTS.GT.0 ) THEN
- C Copy the current residual to a different location in the RGWK
- C array.
- CALL DCOPY(N, RGWK(LDL), 1, RGWK(LR), 1)
- ENDIF
- C ------------------------------------------------------------------
- C Use the DPIGMR algorithm to solve the linear system A*Z = R.
- C ------------------------------------------------------------------
- CALL DPIGMR(N, RGWK(LR), SB, SX, JSCAL, MAXL, MAXLP1, KMP,
- $ NRSTS, JPRE, MATVEC, MSOLVE, NMSL, RGWK(LZ), RGWK(LV),
- $ RGWK(LHES), RGWK(LQ), LGMR, RWORK, IWORK, RGWK(LW),
- $ RGWK(LDL), RHOL, NRMAX, B, BNRM, X, RGWK(LXL), ITOL,
- $ TOL, NELT, IA, JA, A, ISYM, IUNIT, IFLAG, ERR)
- ITER = ITER + LGMR
- NMS = NMS + NMSL
- C
- C Increment X by the current approximate solution Z of A*Z = R.
- C
- LZM1 = LZ - 1
- DO 110 I = 1,N
- X(I) = X(I) + RGWK(LZM1+I)
- 110 CONTINUE
- IF( IFLAG.EQ.0 ) GOTO 600
- IF( IFLAG.EQ.1 ) THEN
- NRSTS = NRSTS + 1
- GOTO 100
- ENDIF
- IF( IFLAG.EQ.2 ) GOTO 620
- C ------------------------------------------------------------------
- C All returns are made through this section.
- C ------------------------------------------------------------------
- C The iteration has converged.
- C
- 600 CONTINUE
- IGWK(7) = NMS
- RGWK(1) = RHOL
- IERR = 0
- RETURN
- C
- C Max number((NRMAX+1)*MAXL) of linear iterations performed.
- 610 CONTINUE
- IGWK(7) = NMS
- RGWK(1) = RHOL
- IERR = 1
- RETURN
- C
- C GMRES failed to reduce last residual in MAXL iterations.
- C The iteration has stalled.
- 620 CONTINUE
- IGWK(7) = NMS
- RGWK(1) = RHOL
- IERR = 2
- RETURN
- C Error return. Insufficient length for RGWK array.
- 640 CONTINUE
- ERR = TOL
- IERR = -1
- RETURN
- C Error return. Inconsistent ITOL and JPRE values.
- 650 CONTINUE
- ERR = TOL
- IERR = -2
- RETURN
- C------------- LAST LINE OF DGMRES FOLLOWS ----------------------------
- END
|