123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364 |
- *DECK DOMN
- SUBROUTINE DOMN (N, B, X, NELT, IA, JA, A, ISYM, MATVEC, MSOLVE,
- + NSAVE, ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT, R, Z, P, AP,
- + EMAP, DZ, CSAV, RWORK, IWORK)
- C***BEGIN PROLOGUE DOMN
- C***PURPOSE Preconditioned Orthomin Sparse Iterative Ax=b Solver.
- C Routine to solve a general linear system Ax = b using
- C the Preconditioned Orthomin method.
- C***LIBRARY SLATEC (SLAP)
- C***CATEGORY D2A4, D2B4
- C***TYPE DOUBLE PRECISION (SOMN-S, DOMN-D)
- C***KEYWORDS ITERATIVE PRECONDITION, NON-SYMMETRIC LINEAR SYSTEM,
- C ORTHOMIN, SLAP, SPARSE
- C***AUTHOR Greenbaum, Anne, (Courant Institute)
- C Seager, Mark K., (LLNL)
- C Lawrence Livermore National Laboratory
- C PO BOX 808, L-60
- C Livermore, CA 94550 (510) 423-3141
- C seager@llnl.gov
- C***DESCRIPTION
- C
- C *Usage:
- C INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, NSAVE, ITOL, ITMAX
- C INTEGER ITER, IERR, IUNIT, IWORK(USER DEFINED)
- C DOUBLE PRECISION B(N), X(N), A(NELT), TOL, ERR, R(N), Z(N)
- C DOUBLE PRECISION P(N,0:NSAVE), AP(N,0:NSAVE), EMAP(N,0:NSAVE)
- C DOUBLE PRECISION DZ(N), CSAV(NSAVE), RWORK(USER DEFINED)
- C EXTERNAL MATVEC, MSOLVE
- C
- C CALL DOMN(N, B, X, NELT, IA, JA, A, ISYM, MATVEC, MSOLVE,
- C $ NSAVE, ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT, R,
- C $ Z, P, AP, EMAP, DZ, CSAV, RWORK, IWORK)
- C
- C *Arguments:
- C N :IN Integer.
- C Order of the Matrix.
- C B :IN Double Precision B(N).
- C Right-hand side vector.
- C X :INOUT Double Precision X(N).
- C On input X is your initial guess for solution vector.
- C On output X is the final approximate solution.
- C NELT :IN Integer.
- C Number of Non-Zeros stored in A.
- C IA :IN Integer IA(NELT).
- C JA :IN Integer JA(NELT).
- C A :IN Double Precision A(NELT).
- C These arrays contain the matrix data structure for A.
- C It could take any form. See "Description", below, for more
- C details.
- C ISYM :IN Integer.
- C Flag to indicate symmetric storage format.
- C If ISYM=0, all non-zero entries of the matrix are stored.
- C If ISYM=1, the matrix is symmetric, and only the upper
- C or lower triangle of the matrix is stored.
- C MATVEC :EXT External.
- C Name of a routine which performs the matrix vector multiply
- C Y = A*X given A and X. The name of the MATVEC routine must
- C be declared external in the calling program. The calling
- C sequence to MATVEC is:
- C CALL MATVEC( N, X, Y, NELT, IA, JA, A, ISYM )
- C Where N is the number of unknowns, Y is the product A*X
- C upon return X is an input vector, NELT is the number of
- C non-zeros in the SLAP IA, JA, A storage for the matrix A.
- C ISYM is a flag which, if non-zero, denotest that A is
- C symmetric and only the lower or upper triangle is stored.
- C MSOLVE :EXT External.
- C Name of a routine which solves a linear system MZ = R for
- C Z given R with the preconditioning matrix M (M is supplied via
- C RWORK and IWORK arrays). The name of the MSOLVE routine must
- C be declared external in the calling program. The calling
- C sequence to MSOLVE is:
- C CALL MSOLVE(N, R, Z, NELT, IA, JA, A, ISYM, RWORK, IWORK)
- C Where N is the number of unknowns, R is the right-hand side
- C vector and Z is the solution upon return. NELT, IA, JA, A and
- C ISYM are defined as above. RWORK is a double precision array
- C that can be used to pass necessary preconditioning information
- C and/or workspace to MSOLVE. IWORK is an integer work array
- C for the same purpose as RWORK.
- C NSAVE :IN Integer.
- C Number of direction vectors to save and orthogonalize
- C against. NSAVE >= 0.
- C ITOL :IN Integer.
- C Flag to indicate type of convergence criterion.
- C If ITOL=1, iteration stops when the 2-norm of the residual
- C divided by the 2-norm of the right-hand side is less than TOL.
- C If ITOL=2, iteration stops when the 2-norm of M-inv times the
- C residual divided by the 2-norm of M-inv times the right hand
- C side is less than TOL, where M-inv is the inverse of the
- C diagonal of A.
- C ITOL=11 is often useful for checking and comparing different
- C routines. For this case, the user must supply the "exact"
- C solution or a very accurate approximation (one with an error
- C much less than TOL) through a common block,
- C COMMON /DSLBLK/ SOLN( )
- C If ITOL=11, iteration stops when the 2-norm of the difference
- C between the iterative approximation and the user-supplied
- C solution divided by the 2-norm of the user-supplied solution
- C is less than TOL. Note that this requires the user to set up
- C the "COMMON /DSLBLK/ SOLN(LENGTH)" in the calling routine.
- C The routine with this declaration should be loaded before the
- C stop test so that the correct length is used by the loader.
- C This procedure is not standard Fortran and may not work
- C correctly on your system (although it has worked on every
- C system the authors have tried). If ITOL is not 11 then this
- C common block is indeed standard Fortran.
- C TOL :INOUT Double Precision.
- C Convergence criterion, as described above. (Reset if IERR=4.)
- C ITMAX :IN Integer.
- C Maximum number of iterations.
- C ITER :OUT Integer.
- C Number of iterations required to reach convergence, or
- C ITMAX+1 if convergence criterion could not be achieved in
- C ITMAX iterations.
- C ERR :OUT Double Precision.
- C Error estimate of error in final approximate solution, as
- C defined by ITOL.
- C IERR :OUT Integer.
- C Return error flag.
- C IERR = 0 => All went well.
- C IERR = 1 => Insufficient space allocated for WORK or IWORK.
- C IERR = 2 => Method failed to converge in ITMAX steps.
- C IERR = 3 => Error in user input.
- C Check input values of N, ITOL.
- C IERR = 4 => User error tolerance set too tight.
- C Reset to 500*D1MACH(3). Iteration proceeded.
- C IERR = 5 => Preconditioning matrix, M, is not positive
- C definite. (r,z) < 0.
- C IERR = 6 => Breakdown of method detected.
- C (p,Ap) < epsilon**2.
- C IUNIT :IN Integer.
- C Unit number on which to write the error at each iteration,
- C if this is desired for monitoring convergence. If unit
- C number is 0, no writing will occur.
- C R :WORK Double Precision R(N).
- C Z :WORK Double Precision Z(N).
- C P :WORK Double Precision P(N,0:NSAVE).
- C AP :WORK Double Precision AP(N,0:NSAVE).
- C EMAP :WORK Double Precision EMAP(N,0:NSAVE).
- C DZ :WORK Double Precision DZ(N).
- C CSAV :WORK Double Precision CSAV(NSAVE)
- C Double Precision arrays used for workspace.
- C RWORK :WORK Double Precision RWORK(USER DEFINED).
- C Double Precision array that can be used for workspace in
- C MSOLVE.
- C IWORK :WORK Integer IWORK(USER DEFINED).
- C Integer array that can be used for workspace in MSOLVE.
- C
- C *Description
- C This routine does not care what matrix data structure is
- C used for A and M. It simply calls the MATVEC and MSOLVE
- C routines, with the arguments as described above. The user
- C could write any type of structure and the appropriate MATVEC
- C and MSOLVE routines. It is assumed that A is stored in the
- C IA, JA, A arrays in some fashion and that M (or INV(M)) is
- C stored in IWORK and RWORK) in some fashion. The SLAP
- C routines DSDOMN and DSLUOM are examples of this procedure.
- C
- C Two examples of matrix data structures are the: 1) SLAP
- C Triad format and 2) SLAP Column format.
- C
- C =================== S L A P Triad format ===================
- C In this format only the non-zeros are stored. They may
- C appear in *ANY* order. The user supplies three arrays of
- C length NELT, where NELT is the number of non-zeros in the
- C matrix: (IA(NELT), JA(NELT), A(NELT)). For each non-zero
- C the user puts the row and column index of that matrix
- C element in the IA and JA arrays. The value of the non-zero
- C matrix element is placed in the corresponding location of
- C the A array. This is an extremely easy data structure to
- C generate. On the other hand it is not too efficient on
- C vector computers for the iterative solution of linear
- C systems. Hence, SLAP changes this input data structure to
- C the SLAP Column format for the iteration (but does not
- C change it back).
- C
- C Here is an example of the SLAP Triad storage format for a
- C 5x5 Matrix. Recall that the entries may appear in any order.
- C
- C 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
- C 1 2 3 4 5 6 7 8 9 10 11
- C |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
- C |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
- C | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
- C | 0 0 0 44 0|
- C |51 0 53 0 55|
- C
- C =================== S L A P Column format ==================
- C
- C In this format the non-zeros are stored counting down
- C columns (except for the diagonal entry, which must appear
- C first in each "column") and are stored in the double pre-
- C cision array A. In other words, for each column in the
- C matrix first put the diagonal entry in A. Then put in the
- C other non-zero elements going down the column (except the
- C diagonal) in order. The IA array holds the row index for
- C each non-zero. The JA array holds the offsets into the IA,
- C A arrays for the beginning of each column. That is,
- C IA(JA(ICOL)),A(JA(ICOL)) are the first elements of the ICOL-
- C th column in IA and A, and IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1)
- C are the last elements of the ICOL-th column. Note that we
- C always have JA(N+1)=NELT+1, where N is the number of columns
- C in the matrix and NELT is the number of non-zeros in the
- C matrix.
- C
- C Here is an example of the SLAP Column storage format for a
- C 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
- C column):
- C
- C 5x5 Matrix SLAP Column format for 5x5 matrix on left.
- C 1 2 3 4 5 6 7 8 9 10 11
- C |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
- C |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
- C | 0 0 33 0 35| JA: 1 4 6 8 9 12
- C | 0 0 0 44 0|
- C |51 0 53 0 55|
- C
- C *Cautions:
- C This routine will attempt to write to the Fortran logical output
- C unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
- C this logical unit is attached to a file or terminal before calling
- C this routine with a non-zero value for IUNIT. This routine does
- C not check for the validity of a non-zero IUNIT unit number.
- C
- C***SEE ALSO DSDOMN, DSLUOM, ISDOMN
- C***REFERENCES 1. Mark K. Seager, A SLAP for the Masses, in
- C G. F. Carey, Ed., Parallel Supercomputing: Methods,
- C Algorithms and Applications, Wiley, 1989, pp.135-155.
- C***ROUTINES CALLED D1MACH, DAXPY, DCOPY, DDOT, ISDOMN
- C***REVISION HISTORY (YYMMDD)
- C 890404 DATE WRITTEN
- C 890404 Previous REVISION DATE
- C 890915 Made changes requested at July 1989 CML Meeting. (MKS)
- C 890922 Numerous changes to prologue to make closer to SLATEC
- C standard. (FNF)
- C 890929 Numerous changes to reduce SP/DP differences. (FNF)
- C 891004 Added new reference.
- C 910411 Prologue converted to Version 4.0 format. (BAB)
- C 910502 Removed MATVEC and MSOLVE from ROUTINES CALLED list. (FNF)
- C 920407 COMMON BLOCK renamed DSLBLK. (WRB)
- C 920511 Added complete declaration section. (WRB)
- C 920929 Corrected format of reference. (FNF)
- C 921019 Changed 500.0 to 500 to reduce SP/DP differences. (FNF)
- C 921113 Corrected C***CATEGORY line. (FNF)
- C 930326 Removed unused variable. (FNF)
- C***END PROLOGUE DOMN
- C .. Scalar Arguments ..
- DOUBLE PRECISION ERR, TOL
- INTEGER IERR, ISYM, ITER, ITMAX, ITOL, IUNIT, N, NELT, NSAVE
- C .. Array Arguments ..
- DOUBLE PRECISION A(NELT), AP(N,0:NSAVE), B(N), CSAV(NSAVE),
- + DZ(N), EMAP(N,0:NSAVE), P(N,0:NSAVE), R(N),
- + RWORK(*), X(N), Z(N)
- INTEGER IA(NELT), IWORK(*), JA(NELT)
- C .. Subroutine Arguments ..
- EXTERNAL MATVEC, MSOLVE
- C .. Local Scalars ..
- DOUBLE PRECISION AK, AKDEN, AKNUM, BKL, BNRM, FUZZ, SOLNRM
- INTEGER I, IP, IPO, K, L, LMAX
- C .. External Functions ..
- DOUBLE PRECISION D1MACH, DDOT
- INTEGER ISDOMN
- EXTERNAL D1MACH, DDOT, ISDOMN
- C .. External Subroutines ..
- EXTERNAL DAXPY, DCOPY
- C .. Intrinsic Functions ..
- INTRINSIC ABS, MIN, MOD
- C***FIRST EXECUTABLE STATEMENT DOMN
- C
- C Check some of the input data.
- C
- ITER = 0
- IERR = 0
- IF( N.LT.1 ) THEN
- IERR = 3
- RETURN
- ENDIF
- FUZZ = D1MACH(3)
- IF( TOL.LT.500*FUZZ ) THEN
- TOL = 500*FUZZ
- IERR = 4
- ENDIF
- FUZZ = FUZZ*FUZZ
- C
- C Calculate initial residual and pseudo-residual, and check
- C stopping criterion.
- CALL MATVEC(N, X, R, NELT, IA, JA, A, ISYM)
- DO 10 I = 1, N
- R(I) = B(I) - R(I)
- 10 CONTINUE
- CALL MSOLVE(N, R, Z, NELT, IA, JA, A, ISYM, RWORK, IWORK)
- C
- IF( ISDOMN(N, B, X, NELT, IA, JA, A, ISYM, MSOLVE, NSAVE,
- $ ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT,
- $ R, Z, P, AP, EMAP, DZ, CSAV,
- $ RWORK, IWORK, AK, BNRM, SOLNRM) .NE. 0 ) GO TO 200
- IF( IERR.NE.0 ) RETURN
- C
- C
- C ***** iteration loop *****
- C
- CVD$R NOVECTOR
- CVD$R NOCONCUR
- DO 100 K = 1, ITMAX
- ITER = K
- IP = MOD( ITER-1, NSAVE+1 )
- C
- C calculate direction vector p, a*p, and (m-inv)*a*p,
- C and save if desired.
- CALL DCOPY(N, Z, 1, P(1,IP), 1)
- CALL MATVEC(N, P(1,IP), AP(1,IP), NELT, IA, JA, A, ISYM)
- CALL MSOLVE(N, AP(1,IP), EMAP(1,IP), NELT, IA, JA, A, ISYM,
- $ RWORK, IWORK)
- IF( NSAVE.EQ.0 ) THEN
- AKDEN = DDOT(N, EMAP, 1, EMAP, 1)
- ELSE
- IF( ITER.GT.1 ) THEN
- LMAX = MIN( NSAVE, ITER-1 )
- DO 20 L = 1, LMAX
- IPO = MOD(IP+(NSAVE+1-L),NSAVE+1)
- BKL = DDOT(N, EMAP(1,IP), 1, EMAP(1,IPO), 1)
- BKL = BKL*CSAV(L)
- CALL DAXPY(N, -BKL, P(1,IPO), 1, P(1,IP), 1)
- CALL DAXPY(N, -BKL, AP(1,IPO), 1, AP(1,IP), 1)
- CALL DAXPY(N, -BKL, EMAP(1,IPO), 1, EMAP(1,IP), 1)
- 20 CONTINUE
- IF( NSAVE.GT.1 ) THEN
- DO 30 L = NSAVE-1, 1, -1
- CSAV(L+1) = CSAV(L)
- 30 CONTINUE
- ENDIF
- ENDIF
- AKDEN = DDOT(N, EMAP(1,IP), 1, EMAP(1,IP), 1)
- IF( ABS(AKDEN).LT.FUZZ ) THEN
- IERR = 6
- RETURN
- ENDIF
- CSAV(1) = 1.0D0/AKDEN
- C
- C calculate coefficient ak, new iterate x, new residual r, and
- C new pseudo-residual z.
- ENDIF
- AKNUM = DDOT(N, Z, 1, EMAP(1,IP), 1)
- AK = AKNUM/AKDEN
- CALL DAXPY(N, AK, P(1,IP), 1, X, 1)
- CALL DAXPY(N, -AK, AP(1,IP), 1, R, 1)
- CALL DAXPY(N, -AK, EMAP(1,IP), 1, Z, 1)
- C
- C check stopping criterion.
- IF( ISDOMN(N, B, X, NELT, IA, JA, A, ISYM, MSOLVE, NSAVE,
- $ ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT,
- $ R, Z, P, AP, EMAP, DZ, CSAV,
- $ RWORK, IWORK, AK, BNRM, SOLNRM) .NE. 0 ) GO TO 200
- C
- 100 CONTINUE
- C
- C ***** end of loop *****
- C
- C Stopping criterion not satisfied.
- ITER = ITMAX + 1
- IERR = 2
- C
- 200 RETURN
- C------------- LAST LINE OF DOMN FOLLOWS ----------------------------
- END
|