123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263 |
- *DECK DPBCO
- SUBROUTINE DPBCO (ABD, LDA, N, M, RCOND, Z, INFO)
- C***BEGIN PROLOGUE DPBCO
- C***PURPOSE Factor a real symmetric positive definite matrix stored in
- C band form and estimate the condition number of the matrix.
- C***LIBRARY SLATEC (LINPACK)
- C***CATEGORY D2B2
- C***TYPE DOUBLE PRECISION (SPBCO-S, DPBCO-D, CPBCO-C)
- C***KEYWORDS BANDED, CONDITION NUMBER, LINEAR ALGEBRA, LINPACK,
- C MATRIX FACTORIZATION, POSITIVE DEFINITE
- C***AUTHOR Moler, C. B., (U. of New Mexico)
- C***DESCRIPTION
- C
- C DPBCO factors a double precision symmetric positive definite
- C matrix stored in band form and estimates the condition of the
- C matrix.
- C
- C If RCOND is not needed, DPBFA is slightly faster.
- C To solve A*X = B , follow DPBCO by DPBSL.
- C To compute INVERSE(A)*C , follow DPBCO by DPBSL.
- C To compute DETERMINANT(A) , follow DPBCO by DPBDI.
- C
- C On Entry
- C
- C ABD DOUBLE PRECISION(LDA, N)
- C the matrix to be factored. The columns of the upper
- C triangle are stored in the columns of ABD and the
- C diagonals of the upper triangle are stored in the
- C rows of ABD . See the comments below for details.
- C
- C LDA INTEGER
- C the leading dimension of the array ABD .
- C LDA must be .GE. M + 1 .
- C
- C N INTEGER
- C the order of the matrix A .
- C
- C M INTEGER
- C the number of diagonals above the main diagonal.
- C 0 .LE. M .LT. N .
- C
- C On Return
- C
- C ABD an upper triangular matrix R , stored in band
- C form, so that A = TRANS(R)*R .
- C If INFO .NE. 0 , the factorization is not complete.
- C
- C RCOND DOUBLE PRECISION
- C an estimate of the reciprocal condition of A .
- C For the system A*X = B , relative perturbations
- C in A and B of size EPSILON may cause
- C relative perturbations in X of size EPSILON/RCOND .
- C If RCOND is so small that the logical expression
- C 1.0 + RCOND .EQ. 1.0
- C is true, then A may be singular to working
- C precision. In particular, RCOND is zero if
- C exact singularity is detected or the estimate
- C underflows. If INFO .NE. 0 , RCOND is unchanged.
- C
- C Z DOUBLE PRECISION(N)
- C a work vector whose contents are usually unimportant.
- C If A is singular to working precision, then Z is
- C an approximate null vector in the sense that
- C NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .
- C If INFO .NE. 0 , Z is unchanged.
- C
- C INFO INTEGER
- C = 0 for normal return.
- C = K signals an error condition. The leading minor
- C of order K is not positive definite.
- C
- C Band Storage
- C
- C If A is a symmetric positive definite band matrix,
- C the following program segment will set up the input.
- C
- C M = (band width above diagonal)
- C DO 20 J = 1, N
- C I1 = MAX(1, J-M)
- C DO 10 I = I1, J
- C K = I-J+M+1
- C ABD(K,J) = A(I,J)
- C 10 CONTINUE
- C 20 CONTINUE
- C
- C This uses M + 1 rows of A , except for the M by M
- C upper left triangle, which is ignored.
- C
- C Example: If the original matrix is
- C
- C 11 12 13 0 0 0
- C 12 22 23 24 0 0
- C 13 23 33 34 35 0
- C 0 24 34 44 45 46
- C 0 0 35 45 55 56
- C 0 0 0 46 56 66
- C
- C then N = 6 , M = 2 and ABD should contain
- C
- C * * 13 24 35 46
- C * 12 23 34 45 56
- C 11 22 33 44 55 66
- C
- C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
- C Stewart, LINPACK Users' Guide, SIAM, 1979.
- C***ROUTINES CALLED DASUM, DAXPY, DDOT, DPBFA, DSCAL
- C***REVISION HISTORY (YYMMDD)
- C 780814 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890831 Modified array declarations. (WRB)
- C 890831 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 900326 Removed duplicate information from DESCRIPTION section.
- C (WRB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE DPBCO
- INTEGER LDA,N,M,INFO
- DOUBLE PRECISION ABD(LDA,*),Z(*)
- DOUBLE PRECISION RCOND
- C
- DOUBLE PRECISION DDOT,EK,T,WK,WKM
- DOUBLE PRECISION ANORM,S,DASUM,SM,YNORM
- INTEGER I,J,J2,K,KB,KP1,L,LA,LB,LM,MU
- C
- C FIND NORM OF A
- C
- C***FIRST EXECUTABLE STATEMENT DPBCO
- DO 30 J = 1, N
- L = MIN(J,M+1)
- MU = MAX(M+2-J,1)
- Z(J) = DASUM(L,ABD(MU,J),1)
- K = J - L
- IF (M .LT. MU) GO TO 20
- DO 10 I = MU, M
- K = K + 1
- Z(K) = Z(K) + ABS(ABD(I,J))
- 10 CONTINUE
- 20 CONTINUE
- 30 CONTINUE
- ANORM = 0.0D0
- DO 40 J = 1, N
- ANORM = MAX(ANORM,Z(J))
- 40 CONTINUE
- C
- C FACTOR
- C
- CALL DPBFA(ABD,LDA,N,M,INFO)
- IF (INFO .NE. 0) GO TO 180
- C
- C RCOND = 1/(NORM(A)*(ESTIMATE OF NORM(INVERSE(A)))) .
- C ESTIMATE = NORM(Z)/NORM(Y) WHERE A*Z = Y AND A*Y = E .
- C THE COMPONENTS OF E ARE CHOSEN TO CAUSE MAXIMUM LOCAL
- C GROWTH IN THE ELEMENTS OF W WHERE TRANS(R)*W = E .
- C THE VECTORS ARE FREQUENTLY RESCALED TO AVOID OVERFLOW.
- C
- C SOLVE TRANS(R)*W = E
- C
- EK = 1.0D0
- DO 50 J = 1, N
- Z(J) = 0.0D0
- 50 CONTINUE
- DO 110 K = 1, N
- IF (Z(K) .NE. 0.0D0) EK = SIGN(EK,-Z(K))
- IF (ABS(EK-Z(K)) .LE. ABD(M+1,K)) GO TO 60
- S = ABD(M+1,K)/ABS(EK-Z(K))
- CALL DSCAL(N,S,Z,1)
- EK = S*EK
- 60 CONTINUE
- WK = EK - Z(K)
- WKM = -EK - Z(K)
- S = ABS(WK)
- SM = ABS(WKM)
- WK = WK/ABD(M+1,K)
- WKM = WKM/ABD(M+1,K)
- KP1 = K + 1
- J2 = MIN(K+M,N)
- I = M + 1
- IF (KP1 .GT. J2) GO TO 100
- DO 70 J = KP1, J2
- I = I - 1
- SM = SM + ABS(Z(J)+WKM*ABD(I,J))
- Z(J) = Z(J) + WK*ABD(I,J)
- S = S + ABS(Z(J))
- 70 CONTINUE
- IF (S .GE. SM) GO TO 90
- T = WKM - WK
- WK = WKM
- I = M + 1
- DO 80 J = KP1, J2
- I = I - 1
- Z(J) = Z(J) + T*ABD(I,J)
- 80 CONTINUE
- 90 CONTINUE
- 100 CONTINUE
- Z(K) = WK
- 110 CONTINUE
- S = 1.0D0/DASUM(N,Z,1)
- CALL DSCAL(N,S,Z,1)
- C
- C SOLVE R*Y = W
- C
- DO 130 KB = 1, N
- K = N + 1 - KB
- IF (ABS(Z(K)) .LE. ABD(M+1,K)) GO TO 120
- S = ABD(M+1,K)/ABS(Z(K))
- CALL DSCAL(N,S,Z,1)
- 120 CONTINUE
- Z(K) = Z(K)/ABD(M+1,K)
- LM = MIN(K-1,M)
- LA = M + 1 - LM
- LB = K - LM
- T = -Z(K)
- CALL DAXPY(LM,T,ABD(LA,K),1,Z(LB),1)
- 130 CONTINUE
- S = 1.0D0/DASUM(N,Z,1)
- CALL DSCAL(N,S,Z,1)
- C
- YNORM = 1.0D0
- C
- C SOLVE TRANS(R)*V = Y
- C
- DO 150 K = 1, N
- LM = MIN(K-1,M)
- LA = M + 1 - LM
- LB = K - LM
- Z(K) = Z(K) - DDOT(LM,ABD(LA,K),1,Z(LB),1)
- IF (ABS(Z(K)) .LE. ABD(M+1,K)) GO TO 140
- S = ABD(M+1,K)/ABS(Z(K))
- CALL DSCAL(N,S,Z,1)
- YNORM = S*YNORM
- 140 CONTINUE
- Z(K) = Z(K)/ABD(M+1,K)
- 150 CONTINUE
- S = 1.0D0/DASUM(N,Z,1)
- CALL DSCAL(N,S,Z,1)
- YNORM = S*YNORM
- C
- C SOLVE R*Z = W
- C
- DO 170 KB = 1, N
- K = N + 1 - KB
- IF (ABS(Z(K)) .LE. ABD(M+1,K)) GO TO 160
- S = ABD(M+1,K)/ABS(Z(K))
- CALL DSCAL(N,S,Z,1)
- YNORM = S*YNORM
- 160 CONTINUE
- Z(K) = Z(K)/ABD(M+1,K)
- LM = MIN(K-1,M)
- LA = M + 1 - LM
- LB = K - LM
- T = -Z(K)
- CALL DAXPY(LM,T,ABD(LA,K),1,Z(LB),1)
- 170 CONTINUE
- C MAKE ZNORM = 1.0
- S = 1.0D0/DASUM(N,Z,1)
- CALL DSCAL(N,S,Z,1)
- YNORM = S*YNORM
- C
- IF (ANORM .NE. 0.0D0) RCOND = YNORM/ANORM
- IF (ANORM .EQ. 0.0D0) RCOND = 0.0D0
- 180 CONTINUE
- RETURN
- END
|