123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310 |
- *DECK DPCHFE
- SUBROUTINE DPCHFE (N, X, F, D, INCFD, SKIP, NE, XE, FE, IERR)
- C***BEGIN PROLOGUE DPCHFE
- C***PURPOSE Evaluate a piecewise cubic Hermite function at an array of
- C points. May be used by itself for Hermite interpolation,
- C or as an evaluator for DPCHIM or DPCHIC.
- C***LIBRARY SLATEC (PCHIP)
- C***CATEGORY E3
- C***TYPE DOUBLE PRECISION (PCHFE-S, DPCHFE-D)
- C***KEYWORDS CUBIC HERMITE EVALUATION, HERMITE INTERPOLATION, PCHIP,
- C PIECEWISE CUBIC EVALUATION
- C***AUTHOR Fritsch, F. N., (LLNL)
- C Lawrence Livermore National Laboratory
- C P.O. Box 808 (L-316)
- C Livermore, CA 94550
- C FTS 532-4275, (510) 422-4275
- C***DESCRIPTION
- C
- C DPCHFE: Piecewise Cubic Hermite Function Evaluator
- C
- C Evaluates the cubic Hermite function defined by N, X, F, D at
- C the points XE(J), J=1(1)NE.
- C
- C To provide compatibility with DPCHIM and DPCHIC, includes an
- C increment between successive values of the F- and D-arrays.
- C
- C ----------------------------------------------------------------------
- C
- C Calling sequence:
- C
- C PARAMETER (INCFD = ...)
- C INTEGER N, NE, IERR
- C DOUBLE PRECISION X(N), F(INCFD,N), D(INCFD,N), XE(NE), FE(NE)
- C LOGICAL SKIP
- C
- C CALL DPCHFE (N, X, F, D, INCFD, SKIP, NE, XE, FE, IERR)
- C
- C Parameters:
- C
- C N -- (input) number of data points. (Error return if N.LT.2 .)
- C
- C X -- (input) real*8 array of independent variable values. The
- C elements of X must be strictly increasing:
- C X(I-1) .LT. X(I), I = 2(1)N.
- C (Error return if not.)
- C
- C F -- (input) real*8 array of function values. F(1+(I-1)*INCFD) is
- C the value corresponding to X(I).
- C
- C D -- (input) real*8 array of derivative values. D(1+(I-1)*INCFD)
- C is the value corresponding to X(I).
- C
- C INCFD -- (input) increment between successive values in F and D.
- C (Error return if INCFD.LT.1 .)
- C
- C SKIP -- (input/output) logical variable which should be set to
- C .TRUE. if the user wishes to skip checks for validity of
- C preceding parameters, or to .FALSE. otherwise.
- C This will save time in case these checks have already
- C been performed (say, in DPCHIM or DPCHIC).
- C SKIP will be set to .TRUE. on normal return.
- C
- C NE -- (input) number of evaluation points. (Error return if
- C NE.LT.1 .)
- C
- C XE -- (input) real*8 array of points at which the function is to
- C be evaluated.
- C
- C NOTES:
- C 1. The evaluation will be most efficient if the elements
- C of XE are increasing relative to X;
- C that is, XE(J) .GE. X(I)
- C implies XE(K) .GE. X(I), all K.GE.J .
- C 2. If any of the XE are outside the interval [X(1),X(N)],
- C values are extrapolated from the nearest extreme cubic,
- C and a warning error is returned.
- C
- C FE -- (output) real*8 array of values of the cubic Hermite
- C function defined by N, X, F, D at the points XE.
- C
- C IERR -- (output) error flag.
- C Normal return:
- C IERR = 0 (no errors).
- C Warning error:
- C IERR.GT.0 means that extrapolation was performed at
- C IERR points.
- C "Recoverable" errors:
- C IERR = -1 if N.LT.2 .
- C IERR = -2 if INCFD.LT.1 .
- C IERR = -3 if the X-array is not strictly increasing.
- C IERR = -4 if NE.LT.1 .
- C (The FE-array has not been changed in any of these cases.)
- C NOTE: The above errors are checked in the order listed,
- C and following arguments have **NOT** been validated.
- C
- C***REFERENCES (NONE)
- C***ROUTINES CALLED DCHFEV, XERMSG
- C***REVISION HISTORY (YYMMDD)
- C 811020 DATE WRITTEN
- C 820803 Minor cosmetic changes for release 1.
- C 870707 Corrected XERROR calls for d.p. name(s).
- C 890206 Corrected XERROR calls.
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890831 Modified array declarations. (WRB)
- C 891006 Cosmetic changes to prologue. (WRB)
- C 891006 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
- C***END PROLOGUE DPCHFE
- C Programming notes:
- C
- C 1. To produce a single precision version, simply:
- C a. Change DPCHFE to PCHFE, and DCHFEV to CHFEV, wherever they
- C occur,
- C b. Change the double precision declaration to real,
- C
- C 2. Most of the coding between the call to DCHFEV and the end of
- C the IR-loop could be eliminated if it were permissible to
- C assume that XE is ordered relative to X.
- C
- C 3. DCHFEV does not assume that X1 is less than X2. thus, it would
- C be possible to write a version of DPCHFE that assumes a
- C decreasing X-array by simply running the IR-loop backwards
- C (and reversing the order of appropriate tests).
- C
- C 4. The present code has a minor bug, which I have decided is not
- C worth the effort that would be required to fix it.
- C If XE contains points in [X(N-1),X(N)], followed by points .LT.
- C X(N-1), followed by points .GT.X(N), the extrapolation points
- C will be counted (at least) twice in the total returned in IERR.
- C
- C DECLARE ARGUMENTS.
- C
- INTEGER N, INCFD, NE, IERR
- DOUBLE PRECISION X(*), F(INCFD,*), D(INCFD,*), XE(*), FE(*)
- LOGICAL SKIP
- C
- C DECLARE LOCAL VARIABLES.
- C
- INTEGER I, IERC, IR, J, JFIRST, NEXT(2), NJ
- C
- C VALIDITY-CHECK ARGUMENTS.
- C
- C***FIRST EXECUTABLE STATEMENT DPCHFE
- IF (SKIP) GO TO 5
- C
- IF ( N.LT.2 ) GO TO 5001
- IF ( INCFD.LT.1 ) GO TO 5002
- DO 1 I = 2, N
- IF ( X(I).LE.X(I-1) ) GO TO 5003
- 1 CONTINUE
- C
- C FUNCTION DEFINITION IS OK, GO ON.
- C
- 5 CONTINUE
- IF ( NE.LT.1 ) GO TO 5004
- IERR = 0
- SKIP = .TRUE.
- C
- C LOOP OVER INTERVALS. ( INTERVAL INDEX IS IL = IR-1 . )
- C ( INTERVAL IS X(IL).LE.X.LT.X(IR) . )
- JFIRST = 1
- IR = 2
- 10 CONTINUE
- C
- C SKIP OUT OF LOOP IF HAVE PROCESSED ALL EVALUATION POINTS.
- C
- IF (JFIRST .GT. NE) GO TO 5000
- C
- C LOCATE ALL POINTS IN INTERVAL.
- C
- DO 20 J = JFIRST, NE
- IF (XE(J) .GE. X(IR)) GO TO 30
- 20 CONTINUE
- J = NE + 1
- GO TO 40
- C
- C HAVE LOCATED FIRST POINT BEYOND INTERVAL.
- C
- 30 CONTINUE
- IF (IR .EQ. N) J = NE + 1
- C
- 40 CONTINUE
- NJ = J - JFIRST
- C
- C SKIP EVALUATION IF NO POINTS IN INTERVAL.
- C
- IF (NJ .EQ. 0) GO TO 50
- C
- C EVALUATE CUBIC AT XE(I), I = JFIRST (1) J-1 .
- C
- C ----------------------------------------------------------------
- CALL DCHFEV (X(IR-1),X(IR), F(1,IR-1),F(1,IR), D(1,IR-1),D(1,IR)
- * ,NJ, XE(JFIRST), FE(JFIRST), NEXT, IERC)
- C ----------------------------------------------------------------
- IF (IERC .LT. 0) GO TO 5005
- C
- IF (NEXT(2) .EQ. 0) GO TO 42
- C IF (NEXT(2) .GT. 0) THEN
- C IN THE CURRENT SET OF XE-POINTS, THERE ARE NEXT(2) TO THE
- C RIGHT OF X(IR).
- C
- IF (IR .LT. N) GO TO 41
- C IF (IR .EQ. N) THEN
- C THESE ARE ACTUALLY EXTRAPOLATION POINTS.
- IERR = IERR + NEXT(2)
- GO TO 42
- 41 CONTINUE
- C ELSE
- C WE SHOULD NEVER HAVE GOTTEN HERE.
- GO TO 5005
- C ENDIF
- C ENDIF
- 42 CONTINUE
- C
- IF (NEXT(1) .EQ. 0) GO TO 49
- C IF (NEXT(1) .GT. 0) THEN
- C IN THE CURRENT SET OF XE-POINTS, THERE ARE NEXT(1) TO THE
- C LEFT OF X(IR-1).
- C
- IF (IR .GT. 2) GO TO 43
- C IF (IR .EQ. 2) THEN
- C THESE ARE ACTUALLY EXTRAPOLATION POINTS.
- IERR = IERR + NEXT(1)
- GO TO 49
- 43 CONTINUE
- C ELSE
- C XE IS NOT ORDERED RELATIVE TO X, SO MUST ADJUST
- C EVALUATION INTERVAL.
- C
- C FIRST, LOCATE FIRST POINT TO LEFT OF X(IR-1).
- DO 44 I = JFIRST, J-1
- IF (XE(I) .LT. X(IR-1)) GO TO 45
- 44 CONTINUE
- C NOTE-- CANNOT DROP THROUGH HERE UNLESS THERE IS AN ERROR
- C IN DCHFEV.
- GO TO 5005
- C
- 45 CONTINUE
- C RESET J. (THIS WILL BE THE NEW JFIRST.)
- J = I
- C
- C NOW FIND OUT HOW FAR TO BACK UP IN THE X-ARRAY.
- DO 46 I = 1, IR-1
- IF (XE(J) .LT. X(I)) GO TO 47
- 46 CONTINUE
- C NB-- CAN NEVER DROP THROUGH HERE, SINCE XE(J).LT.X(IR-1).
- C
- 47 CONTINUE
- C AT THIS POINT, EITHER XE(J) .LT. X(1)
- C OR X(I-1) .LE. XE(J) .LT. X(I) .
- C RESET IR, RECOGNIZING THAT IT WILL BE INCREMENTED BEFORE
- C CYCLING.
- IR = MAX(1, I-1)
- C ENDIF
- C ENDIF
- 49 CONTINUE
- C
- JFIRST = J
- C
- C END OF IR-LOOP.
- C
- 50 CONTINUE
- IR = IR + 1
- IF (IR .LE. N) GO TO 10
- C
- C NORMAL RETURN.
- C
- 5000 CONTINUE
- RETURN
- C
- C ERROR RETURNS.
- C
- 5001 CONTINUE
- C N.LT.2 RETURN.
- IERR = -1
- CALL XERMSG ('SLATEC', 'DPCHFE',
- + 'NUMBER OF DATA POINTS LESS THAN TWO', IERR, 1)
- RETURN
- C
- 5002 CONTINUE
- C INCFD.LT.1 RETURN.
- IERR = -2
- CALL XERMSG ('SLATEC', 'DPCHFE', 'INCREMENT LESS THAN ONE', IERR,
- + 1)
- RETURN
- C
- 5003 CONTINUE
- C X-ARRAY NOT STRICTLY INCREASING.
- IERR = -3
- CALL XERMSG ('SLATEC', 'DPCHFE',
- + 'X-ARRAY NOT STRICTLY INCREASING', IERR, 1)
- RETURN
- C
- 5004 CONTINUE
- C NE.LT.1 RETURN.
- IERR = -4
- CALL XERMSG ('SLATEC', 'DPCHFE',
- + 'NUMBER OF EVALUATION POINTS LESS THAN ONE', IERR, 1)
- RETURN
- C
- 5005 CONTINUE
- C ERROR RETURN FROM DCHFEV.
- C *** THIS CASE SHOULD NEVER OCCUR ***
- IERR = -5
- CALL XERMSG ('SLATEC', 'DPCHFE',
- + 'ERROR RETURN FROM DCHFEV -- FATAL', IERR, 2)
- RETURN
- C------------- LAST LINE OF DPCHFE FOLLOWS -----------------------------
- END
|